\(\frac{4x-1}{2x+3}\) đạt giá trị nguyên. Biết x ∈ N...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 giờ trước (22:02)

tham khảo:


Bước 1: Điều kiện xác định
\(2 x + 3 \neq 0\)\(x \neq - \frac{3}{2}\).
Nhưng vì \(x \in \mathbb{N}\), điều kiện này luôn đúng.


Bước 2: Đặt \(G = k \in \mathbb{Z}\)

\(\frac{4 x - 1}{2 x + 3} = k\)

Nhân chéo:

\(4 x - 1 = k \left(\right. 2 x + 3 \left.\right)\) \(4 x - 1 = 2 k x + 3 k\)


Bước 3: Chuyển vế

\(4 x - 2 k x = 3 k + 1\) \(x \left(\right. 4 - 2 k \left.\right) = 3 k + 1\)


Bước 4: Giải x

\(x = \frac{3 k + 1}{4 - 2 k}\)

Yêu cầu: \(x \in \mathbb{N}\) ⇒ mẫu phải chia hết tử và kết quả dương.


Bước 5: Thử các giá trị \(k\) nguyên
Ta phải tìm \(k\) sao cho \(\frac{3 k + 1}{4 - 2 k} \in \mathbb{N}\).

  • \(k = 0\): \(x = \frac{1}{4}\) (loại)
  • \(k = 1\): \(x = \frac{4}{2} = 2\)
  • \(k = 2\): \(x = \frac{7}{0}\) (loại)
  • \(k = 3\): \(x = \frac{10}{- 2} = - 5\) (loại)
  • \(k = - 1\): \(x = \frac{- 2}{6}\) (loại)
  • \(k = - 2\): \(x = \frac{- 5}{8}\) (loại)
  • \(k = - 4\): \(x = \frac{- 11}{12}\) (loại)
  • \(k = 0.5\) hay không nguyên → bỏ, vì \(k\) nguyên.

Bước 6: Kết luận
Chỉ có \(k = 1\) cho \(x = 2\) nguyên dương.

Đáp án: \(x = 2\)

S
9 giờ trước (7:53)

\(G=\frac{4x-1}{2x+3}=\frac{2\cdot\left(2x+3\right)-6-1}{2x+3}\)

\(=\frac{2\cdot\left(2x+3\right)-7}{2x+3}=2-\frac{7}{2x+3}\)

để G là số nguyên thì 2x+3 thuộc Ư(7) = \(\left\lbrace\pm1;\pm7\right\rbrace\)

vì x thuộc N nên \(x\ge0\)

\(\Rightarrow2x\ge0\Rightarrow2x+3\ge3\)

ta có: 2x + 3 = 7

⇒ 2x = 7 - 3 = 4

⇒ x = 4 : 2 = 2

vậy để G nhận giá trị nguyên thì x = 2

22 tháng 2 2018

Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0

\(\Rightarrow4-x=1\rightarrow x=3\)

thay vào ta đc A=3

B3

\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)

Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )

Vậy gtln của 3/4-x là 3 thay vào ta đc b=4

Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)

22 tháng 2 2018

B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)

VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}

\(\Rightarrow\)x={0;-1;23}

1 tháng 1 2017

a) Để A nguyên thì \(3⋮\left(x+2\right)\)\(\Rightarrow x+2\inƯ\left(3\right)\)\(\Rightarrow x+2\in\left\{-3;-1;1;3\right\}\)\(\Rightarrow x\in\left\{-5;-3;-1;1\right\}\)

b) Để B nguyên thì \(2x⋮\left(x-1\right)\)\(\Rightarrow\left(2x-2+2\right)⋮\left(x-1\right)\)\(\Rightarrow2\left(x-1\right)+2⋮x-1\)

Vì \(\hept{\begin{cases}2\left(x-1\right)+2⋮x-1\\2\left(x-1\right)⋮x-1\end{cases}}\)\(\Rightarrow2⋮x-1\)\(x-1\inƯ\left(2\right)\)\(\Rightarrow x-1\in\left\{-2;-1;1;2\right\}\)\(\Rightarrow x\in\left\{-1;0;2;3\right\}\)

1 tháng 1 2017

bn kia lm dai qa

ta co : 2x/x-1

=2(x-1)+1/x-1

=2+1

=3

20 tháng 9 2018

\(D=\frac{4x+1}{x+3}\inℤ\Leftrightarrow4x+1⋮x+3\)

\(\Rightarrow4x+12-11⋮x+3\)

\(\Rightarrow4\left(x+3\right)-11⋮x+3\)

\(\Rightarrow11⋮x+3\)

\(\Rightarrow x+3\in\left\{-1;1;-11;11\right\}\)

\(\Rightarrow x\in\left\{-4;-2;-14;8\right\}\)

20 tháng 9 2018

a) \(D=\frac{4x+1}{x+3}\)
=> 4x + 1 \(⋮\)( x + 3 ) để D là số nguyên

Mà ( x + 3 ) \(⋮\)( x + 3 ) => 4( x + 3 ) \(⋮\)( x + 3 )
=> [ 4x + 1 - 4( x + 3 ) ] \(⋮\)( x + 3 )
=> [ 4x + 1 - 4x + 12 ]  \(⋮\)( x + 3 )
=> 13  \(⋮\)( x + 3 )
=> \(x+3\inƯ\left(13\right)\)\(=\left\{\pm1;\pm13\right\}\)

x + 3-11-1313
24-1016

Vậy \(x\in\left\{-10;2;4;16\right\}\)Để D là số nguyên
b) \(E=\frac{6x+2}{2x-3}\)
=> 6x + 2 \(⋮\)2x - 3 để E là số nguyên
Mà ( 2x - 3 )  \(⋮\)( 2x - 3 ) => 3( 2x - 3 )  \(⋮\)( 2x - 3 )

=> [ 6x + 2 - 3( 2x - 3 ) ]  \(⋮\)( 2x - 3 )
=> [ 6x + 2 - 6x - 3 ]  \(⋮\)( 2x - 3 )
=> -1  \(⋮\)( 2x - 3 )
=> ( 2x - 3 ) \(\inƯ\left(-1\right)=\left\{\pm1\right\}\)
 

2x - 3-11
2x24
x12

Vậy x \(\in\left\{1;2\right\}\)để E là số nguyên
Còn phần còn lại cậu có thể làm tương tự.

29 tháng 2 2020

ua, x,y,z o dau vay ban

29 tháng 2 2020

\(\frac{1}{3}-|\frac{5}{4}-2x|=\frac{1}{4}\)

\(\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{4}+\frac{1}{3}=\frac{7}{12}\)

\(\Leftrightarrow\orbr{\begin{cases}Th1:\frac{5}{4}-2x=\frac{7}{12}\\Th2:\frac{5}{4}-2x=-\frac{7}{12}\end{cases}}\)

\(\Leftrightarrow Th1:\frac{5}{4}-2x=\frac{7}{12}\)                                                 \(\Leftrightarrow Th2:\frac{5}{4}-2x=-\frac{7}{12}\)                      

                 \(\Leftrightarrow2x=\frac{7}{12}+\frac{5}{4}\)                                           \(\Leftrightarrow2x=-\frac{7}{12}+\frac{5}{4}\)

                  \(\Leftrightarrow2x=\frac{11}{6}\)                                                      \(\Leftrightarrow2x=\frac{2}{3}\)

                  \(\Leftrightarrow x=\frac{11}{12}\)                                                         \(\Leftrightarrow x=\frac{1}{3}\)

P/s : Mình làm bừa ạ nếu kh đúng xin mọi người chỉ thêm ~~

17 tháng 7 2019

Để phân số có giá trị là 1 số nguyen

\(\Leftrightarrow4x-6⋮2x+1\)

\(\Leftrightarrow2.\left(2x+1\right)-8⋮2x+1\)

Mà \(2.\left(2x+1\right)⋮2x+1\)

\(\Rightarrow8⋮2x+1\)

\(\Rightarrow2x+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4\pm8\right\}\)

Em tìm x rồi thay vào phân số H ra giá trị nguyên nhé.

8 tháng 11 2017

a) Ta có: \(M=\frac{2x+5}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=\frac{2x+2+3}{x+1}\)

Vì \(2x+2⋮\left(x+1\right)\Rightarrow3⋮\left(x+1\right)\)

Nên \(x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow x=\left\{0;-2;2;-4\right\}\)

b) Tương tự

6 tháng 4 2017

\(A=\frac{x^2+2x+5}{x+1}=\frac{\left(x^2+2x+1\right)+4}{x+1}=\frac{\left(x+1\right)^2+4}{x+1}=x+1+\frac{4}{x+1}\)

Để \(A=x+1+\frac{4}{x+1}\) là số nguyên <=> \(\frac{4}{x+1}\) là số nguyên 

=> x + 1 \(\inƯ\left(4\right)\) = { - 4; - 2; - 1; 1; 2; 4 }

=> x = { - 5; - 3; - 2; 0; 1; 3 }

Vậy x = { - 5; - 3; - 2; 0; 1; 3 }

6 tháng 4 2017

Để biểu thức A đạt giá trị nguyên thì phân số \(\frac{x^2+2x+5}{x+1}\)phải đạt giá trị nguyên.

\(\Rightarrow x^2+2x+5⋮x+1\)

\(\Rightarrow x.\left(x+1\right)+2x+5-x⋮x+1\)

\(\Rightarrow x+5⋮x+1\)

\(\Rightarrow\left(x+1\right)+4⋮x+1\)

\(\Rightarrow4⋮x+1\)

\(\Rightarrow x+1\inƯ\left(4\right)=\left\{-4;-2;-1;+1;+2;+4\right\}\)

\(\Rightarrow x\in\left\{-5;-3;-2;0;+1;+3\right\}\)

vậy \(x\in\left\{-5;-3;-2;0;+1;+3\right\}\)thì A đạt giá trị nguyên