K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

Để f(x) > 0 thì:

th1: \(\hept{\begin{cases}2-x>0\\x+3>0\\4-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x>-3\\x< 4\end{cases}\Leftrightarrow}-3< x< 2}\)

th2: \(\hept{\begin{cases}2-x< 0\\x+3< 0\\4-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< -3\\x< 4\end{cases}\Leftrightarrow}2< x< -3}\)(vô lí)

th3:\(\hept{\begin{cases}2-x< 0\\x+3>0\\4-x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x>-3\\x>4\end{cases}\Leftrightarrow}x>4}\)

th4:\(\hept{\begin{cases}2-x>0\\x+3< 0\\4-x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x< -3\\x>4\end{cases}\Leftrightarrow}4< x< -3}\)(vô lí)

Vậy x>-3 và x khác 4 thì f(x) > 0

\(\text{Δ}=\left(m+1\right)^2-4\cdot2=\left(m+1\right)^2-8\)

Để f(x)>0 với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}1>0\\\left(m+1\right)^2-8< 0\end{matrix}\right.\)

=>\(\left(m+1\right)^2-8< 0\)

=>\(\left(m+1\right)^2< 8\)

=>\(-2\sqrt{2}< m+1< 2\sqrt{2}\)

=>\(-2\sqrt{2}-1< m< 2\sqrt{2}-1\)

14 tháng 11 2017

a, f(x)= (x^5-x^4)-(4x^4-4x^3)+(5x^3-5x^2)-(4x^2-4x)+(4x-4)

         =x^4(x-1)-4x^3(x-1)+5x^2(x-1)-4x(x-1)+4(x-1)

        =(x^4-4x^3+5x^2-4x+4)(x-1)

       =[(x^4-2x^3)-(2x^3-4x^2)+(x^2-2x)-(2x-4)](x-1)

       =(x^3-2x^2+x-2)(x-2)(x-1)

      =(x^2+1)(x-2)^2(x-1)

20 tháng 8 2017

theo định lí Vi-Et nha bạn

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

b) Ta có: \(F=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

\(=\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)

c) Để F dương thì F>0

\(\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-2}>0\)

\(\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}-2>0\)

\(\Leftrightarrow\sqrt{x}>2\)

hay x>4(nhận)

Vậy: để F dương thì \(x>4\)

d) Để F=3 thì \(\frac{\sqrt{x}}{\sqrt{x}-2}=3\)

\(\Leftrightarrow\sqrt{x}=3\left(\sqrt{x}-2\right)\)

\(\Leftrightarrow\sqrt{x}=3\sqrt{x}-6\)

\(\Leftrightarrow\sqrt{x}-3\sqrt{x}=-6\)

\(\Leftrightarrow-2\sqrt{x}=-6\)

\(\Leftrightarrow\sqrt{x}=3\)

hay x=9(nhận)

Vậy: để F=3 thì x=9

e) Để \(F\in Z\) thì \(\sqrt{x}⋮\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2+2⋮\sqrt{x}-2\)

\(\sqrt{x}-2⋮\sqrt{x}-2\forall x\) thỏa mãn ĐKXĐ

nên \(2⋮\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2\inƯ\left(2\right)\)

\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;-2;-1\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{3;4;0;1\right\}\)

hay \(x\in\left\{9;16;0;1\right\}\)(nhận)

Vậy: để \(F\in Z\) thì \(x\in\left\{9;16;0;1\right\}\)

11 tháng 3 2018

\(f\left(x\right)=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)+1\)  

\(f\left(x\right)=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)+1\)

\(f\left(x\right)=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)+1\)

\(f\left(x\right)=\left(x^2+7x+10\right)\left(x^2+7x+12\right)+1\)

\(f\left(x\right)=\left(x^2+7x+11-1\right)\left(x^2+7x+11+1\right)+1\)

\(f\left(x\right)=\left(x^2+7x+11\right)^2-1+1\)

\(f\left(x\right)=\left(x^2+7x+11\right)^2\Leftrightarrowđpcm\)

14 tháng 3 2018

ƒ (x)=(x+2)(x+3)(x+4)(x+5)+1  

ƒ (x)=(x+2)(x+5)(x+3)(x+4)+1

ƒ (x)=(x2+5x+2x+10)(x2+4x+3x+12)+1

ƒ (x)=(x2+7x+10)(x2+7x+12)+1

ƒ (x)=(x2+7x+11−1)(x2+7x+11+1)+1

ƒ (x)=(x2+7x+11)2−1+1

ƒ (x)=(x2+7x+11)2⇔đpcm

11 tháng 3 2018

Bạn ơi hình như đề cho thừa thì phải 

Vì nếu bạn thay x=2 thì f(x) ko cp

Sửa lại đề rùi nói cho mk , mk làm cho nha 

11 tháng 12 2018

cmr a(a+1)(a+2)(a+4)(a+5)(a+6)+36 là số chính phương với mọi a nguyên

10 tháng 8 2016
a = -1 b = 20 c = -12