Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Δ}=\left(m+1\right)^2-4\cdot2=\left(m+1\right)^2-8\)
Để f(x)>0 với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}1>0\\\left(m+1\right)^2-8< 0\end{matrix}\right.\)
=>\(\left(m+1\right)^2-8< 0\)
=>\(\left(m+1\right)^2< 8\)
=>\(-2\sqrt{2}< m+1< 2\sqrt{2}\)
=>\(-2\sqrt{2}-1< m< 2\sqrt{2}-1\)
a, f(x)= (x^5-x^4)-(4x^4-4x^3)+(5x^3-5x^2)-(4x^2-4x)+(4x-4)
=x^4(x-1)-4x^3(x-1)+5x^2(x-1)-4x(x-1)+4(x-1)
=(x^4-4x^3+5x^2-4x+4)(x-1)
=[(x^4-2x^3)-(2x^3-4x^2)+(x^2-2x)-(2x-4)](x-1)
=(x^3-2x^2+x-2)(x-2)(x-1)
=(x^2+1)(x-2)^2(x-1)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
b) Ta có: \(F=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
\(=\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c) Để F dương thì F>0
\(\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-2}>0\)
mà \(\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x}-2>0\)
\(\Leftrightarrow\sqrt{x}>2\)
hay x>4(nhận)
Vậy: để F dương thì \(x>4\)
d) Để F=3 thì \(\frac{\sqrt{x}}{\sqrt{x}-2}=3\)
\(\Leftrightarrow\sqrt{x}=3\left(\sqrt{x}-2\right)\)
\(\Leftrightarrow\sqrt{x}=3\sqrt{x}-6\)
\(\Leftrightarrow\sqrt{x}-3\sqrt{x}=-6\)
\(\Leftrightarrow-2\sqrt{x}=-6\)
\(\Leftrightarrow\sqrt{x}=3\)
hay x=9(nhận)
Vậy: để F=3 thì x=9
e) Để \(F\in Z\) thì \(\sqrt{x}⋮\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}-2+2⋮\sqrt{x}-2\)
mà \(\sqrt{x}-2⋮\sqrt{x}-2\forall x\) thỏa mãn ĐKXĐ
nên \(2⋮\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}-2\inƯ\left(2\right)\)
\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;-2;-1\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{3;4;0;1\right\}\)
hay \(x\in\left\{9;16;0;1\right\}\)(nhận)
Vậy: để \(F\in Z\) thì \(x\in\left\{9;16;0;1\right\}\)
\(f\left(x\right)=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)+1\)
\(f\left(x\right)=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)+1\)
\(f\left(x\right)=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)+1\)
\(f\left(x\right)=\left(x^2+7x+10\right)\left(x^2+7x+12\right)+1\)
\(f\left(x\right)=\left(x^2+7x+11-1\right)\left(x^2+7x+11+1\right)+1\)
\(f\left(x\right)=\left(x^2+7x+11\right)^2-1+1\)
\(f\left(x\right)=\left(x^2+7x+11\right)^2\Leftrightarrowđpcm\)
Bạn ơi hình như đề cho thừa thì phải
Vì nếu bạn thay x=2 thì f(x) ko cp
Sửa lại đề rùi nói cho mk , mk làm cho nha
Để f(x) > 0 thì:
th1: \(\hept{\begin{cases}2-x>0\\x+3>0\\4-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x>-3\\x< 4\end{cases}\Leftrightarrow}-3< x< 2}\)
th2: \(\hept{\begin{cases}2-x< 0\\x+3< 0\\4-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< -3\\x< 4\end{cases}\Leftrightarrow}2< x< -3}\)(vô lí)
th3:\(\hept{\begin{cases}2-x< 0\\x+3>0\\4-x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x>-3\\x>4\end{cases}\Leftrightarrow}x>4}\)
th4:\(\hept{\begin{cases}2-x>0\\x+3< 0\\4-x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x< -3\\x>4\end{cases}\Leftrightarrow}4< x< -3}\)(vô lí)
Vậy x>-3 và x khác 4 thì f(x) > 0