Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1
Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)
\(\Leftrightarrow a=-1\)
Vậy ...
a) \(x^3+x^2-x+a=\left(x^2-x+1\right)\left(x+2\right)+\left(a-2\right)\).
Đa thức trên chia hết cho \(x+2\) khi và chỉ khi a = 2.
b) \(x^3+ax^2+2x+b=\left(x^2+x+1\right)\left(x+1\right)+\left(a-2\right)x^2+\left(b-1\right)\) chia hết cho \(x^2+x+1\) khi và chỉ khi:
\(\frac{a-2}{1}=\frac{0}{1}=\frac{b-1}{1}\Leftrightarrow a=2;b=1\).
c) Tương tự.
Thực hiện phép chia đa thức cho đa thức:
\(x^3+ax^2+2x+b=\left(x^2+x+1\right)\left(x+a-1\right)+\left[1-\left(a-1\right)\right]x+b-\left(a-1\right)\)
Để \(x^3+ax^2+2x+b\) chia hết cho đa thức \(x^2+x+1\):
\(\hept{\begin{cases}1-\left(a-1\right)=0\\b-\left(a-1\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}b=1\\a=2\end{cases}}\)
a, Ta có \(Q\left(x\right)=x+1=0\Leftrightarrow x=-1\)
Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là -1 hay
\(3\left(-1\right)^3+2\left(-1\right)^2-5\left(-1\right)+m=0\Leftrightarrow m=-4\)
b.. ta có \(Q\left(x\right)=x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là 1 và 2 hay
\(\hept{\begin{cases}2+a+b+3=0\\2.2^3+a.2^2+b.2+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-5\\4a+2b=-19\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{9}{2}\\b=-\frac{1}{2}\end{cases}}\)
Đặt phép chia ra ... ta được kết quả số dư là a - 30
Để đa thức chia hết cho 2x - 1 thì a- 30 = 0
=> a = 30
Đề phép chia hết thì dư a - 30 phải bằng 0 tức là
a - 30 = 0 => a = 30
Vậy a = 30.
a) 541 + (218 - x) = 735
Suy ra 218 - x = 735 - 541 hay 218 - x = 194.
Do đó x = 218 - 194. Vậy x = 24.
b) 5(x + 35) = 515 suy ra x + 35 = 515 : 5 = 103.
Do đó x = 103 - 35 =68.
c) Từ 96 - 3(x + 1) = 42 suy ra 3(x + 1) = 96 - 42 = 54. Do đó x + 1 = 54 : 3 = 18. Vậy x = 18 - 1 hay x = 17.
d) Từ 12x - 33 = 32 . 33 hay 12x - 33 = 243 suy ra 12x = 243 + 33 hay 12x = 276. Vậy x = 23.
Bài 1.
a)\(\frac{4x-4}{x^2-4x+4}\div\frac{x^2-1}{\left(2-x\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\div\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\times\frac{\left(x-2\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4}{x+1}\)
b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}=\frac{2x+1}{x\left(2x-1\right)}+\frac{-32x^2}{4x^2-1}+\frac{1-2x}{x\left(2x+1\right)}\)
\(=\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{\left(1-2x\right)\left(2x-1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{4x^2+4x+1}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{4x^2+4x+1-32x^3-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-32x^3+8x}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{-8x\left(4x^2-1\right)}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-8x\left(2x-1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}=-8\)
c) \(\left(\frac{1}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x}{x^2-1}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{x-1+x+1+2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)
\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{4x}=\frac{1}{x+1}\)
Bài 3.
N = ( 4x + 3 )2 - 2x( x + 6 ) - 5( x - 2 )( x + 2 )
= 16x2 + 24x + 9 - 2x2 - 12x - 5( x2 - 4 )
= 14x2 + 12x + 9 - 5x2 + 20
= 9x2 + 12x + 29
= 9( x2 + 4/3x + 4/9 ) + 25
= 9( x + 2/3 )2 + 25 ≥ 25 > 0 ∀ x
=> đpcm
a) 8x(x-2013)-(x-2013)=0
\(\Leftrightarrow\left(x-2013\right)\left(8x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2013\\x=\dfrac{1}{8}\end{matrix}\right.\)
8x(x - 2013) - x + 2013 = 0
⇔ 8x(x - 2013) - (x - 2013) = 0
⇔ (x - 2013)(8x - 1) = 0
⇔ x - 2013 = 0 hoặc 8x - 1 = 0
⇔ x = 2013 hoặc x = \(\dfrac{1}{8}\)
ta có: 2x2 - x + 1 chia hết cho 2x + 1
2x2 + x - 2x - 1 + 2 chia hết cho 2x + 1
x.(2x+1) - (2x+1) + 2 chia hết cho 2x + 1
(x-1).(2x+1) + 2 chia hết cho 2x + 1
mà (x-1).(2x+1) chia hết cho 2x + 1
=> 2 chia hết cho 2x + 1
=> ...
bn tự làm tiếp nha