Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a: \(\dfrac{x+7}{x-5}< 0\)
=>x+7>0 và x-5<0
=>-7<x<5
b: \(\dfrac{x-4}{x+9}>0\)
=>x-4>0 hoặc x+9<0
=>x>4 hoặc x<-9
c: \(\dfrac{x-1}{x+9}>1\)
\(\Leftrightarrow\dfrac{x-1-x-9}{x+9}>0\)
=>x+9>0
hay x>-9
d: \(\dfrac{x+5}{x-11}< 1\)
\(\Leftrightarrow\dfrac{x+5-x+11}{x-11}< 0\)
=>x-11<0
hay x<11
Đăng từng bài một thôi bạn!
1)\(\left(-\dfrac{5}{13}\right)^{2017}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(-\dfrac{5}{13}\right)^{2016}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(\dfrac{5}{13}\right)^{2016}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(\dfrac{5}{13}.\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).1^{2016}\)
\(=-\dfrac{5}{13}\)
a: \(\dfrac{x+1}{5}+\dfrac{x+1}{6}=\dfrac{x+1}{7}+\dfrac{x+1}{8}\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}-\dfrac{1}{8}\right)=0\)
=>x+1=0
hay x=-1
b: \(\Leftrightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)
=>x-2010=0
hay x=2010
c: \(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\dfrac{x}{\left(x+2\right)\left(x+17\right)}=\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}\)
=>x=15
Bài1:
Giải 1 câu các câu sau tương tự
1.A=|x|+1
Với mọi x thì |x|>=0
=>|x|+1 >=1
Hay A>=1
Để A=1 thì |x|=0
=>x=0
Vậy...
Bài2:
1.A=−|x−2|+7
Với mọi x thì −|x−2|nhỏ hơn bằng 0
=>−|x−2|+7 nhỏ hơn bằng 7
Hay A nhỏ hơn bằng 7
Để A=7 thì |x−2|=0
=>x-2=0=>x=2
Các câu sau tương tự
1) \(A=\left|x\right|+1\ge1\forall x\)
\(\Rightarrow GTNN\) của A là 1 khi \(\left|x\right|=0\Leftrightarrow x=0\)
vậy GTNN của A là 1 khi \(x=0\)
2) \(B=\left|x+1\right|-\dfrac{7}{3}\ge-\dfrac{7}{3}\forall x\)
\(\Rightarrow GTNN\) của B là \(-\dfrac{7}{3}\) khi \(\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
vậy GTNN của B là \(-\dfrac{7}{3}\) khi \(x=-1\)
3) \(C=\dfrac{2}{5}\left|2x+5\right|-2\ge-2\forall x\)
\(\Rightarrow GTNN\) của C là -2 khi \(\left|2x+5\right|=0\Leftrightarrow2x+5=0\Leftrightarrow2x=-5\Leftrightarrow x=-\dfrac{5}{2}\)
vậy GTNN của C là -2 khi \(x=-\dfrac{5}{2}\)
Tìm x dễ thì tự làm nha:
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+4}{2000}+\dfrac{x+3}{2001}-\dfrac{x+2}{2002}-\dfrac{x+1}{2003}=0\)
\(\Rightarrow\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)-\left(\dfrac{x+2}{2002}+1\right)-\left(\dfrac{x+1}{2003}\right)=0\)\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x+2004=0\Rightarrow x=-2004\)
1. đề bạn ghi rõ lại giúp mình đc ko r mình giải lại cho
2. Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x^2}{2.3^2}=\dfrac{y^2}{5^2}=\dfrac{2x^2-y^2}{18-25}=\dfrac{-28}{-7}=4\)
\(\dfrac{x}{3}=4\Rightarrow x=12\)
\(\dfrac{y}{5}=4\Rightarrow y=20\)
Vậy x=12 và y=20
a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (1)
\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)
Từ (1) và (2) suy ra: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
b.M = \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{50^2}\right)\)
= \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{2499}{2500}\)
= \(\dfrac{1.3.2.4.3.5...49.51}{2^2.3^2.4^2...50^2}\)
\(\dfrac{51}{2.50}=\dfrac{51}{100}\)
Lời giải:
a)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow \left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2=\frac{(a+c)^2}{(b+d)^2}(1)\)
Mặt khác, \(\frac{a}{b}=\frac{c}{d}\Rightarrow \frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}(2)\) (áp dụng tính chất dãy tỉ số bằng nhau)
Từ \((1),(2)\Rightarrow \frac{(a+c)^2}{(b+d)^2}=\frac{a^2+c^2}{b^2+d^2}\)
b) Vì \(1-\frac{1}{2^2};1-\frac{1}{3^2};...;1-\frac{1}{50^2}<1\) nên:
\(\left\{\begin{matrix} \left \{ 1-\frac{1}{2^2} \right \}=1-\frac{1}{2^2}\\ \left \{ 1-\frac{1}{3^2} \right \}=1-\frac{1}{3^2}\\ ....\\ \left \{ 1-\frac{1}{50^2} \right \}=1-\frac{1}{50^2}\end{matrix}\right.\)
\(\Rightarrow M=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{50^2}\right)\)
\(\Leftrightarrow M=\frac{(2^2-1)(3^2-1)(4^2-1)....(50^2-1)}{(2.3....50)^2}\)
\(\Leftrightarrow M=\frac{[(2-1)(3-1)...(50-1)][(2+1)(3+1)...(50+1)]}{(2.3.4...50)^2}\)
\(\Leftrightarrow M=\frac{(2.3...49)(3.4.5...51)}{(2.3.4...50)^2}=\frac{(2.3.4...49)^2.50.51}{2.(2.3....49)^2.50^2}=\frac{50.51}{2.50^2}=\frac{51}{100}\)
a) \(\dfrac{-7}{12}-\left(\dfrac{3}{5}+x\right)=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-7}{12}-\dfrac{3}{5}-x=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-71}{60}-x=\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{-71}{60}-\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{-29}{15}\)
Vậy \(x=\dfrac{-29}{15}\)
b) \(2017x\left(x-\dfrac{2006}{7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2017x=0\\x-\dfrac{2006}{7}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2006}{7}\end{matrix}\right.\)
Vậy \(x=0\) ; \(x=\dfrac{2006}{7}\)
c) \(5\left(x-2\right)+3x\left(2-x\right)=0\)
\(\Leftrightarrow5\left(x-2\right)-3x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\5-3x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy \(x=2\) ; \(x=\dfrac{5}{3}\)
a: ta có: A>0
=>x(x+4)>0
=>x>0 hoặc x<-4
b: Ta có: B>0
=>(x-3)(x+7)>0
=>x>3 hoặc x<-7
c: Ta có: C>0
\(\Leftrightarrow x^2\cdot\dfrac{1}{6}>0\)
hay x<>0
d: ta có: D<0
\(\Leftrightarrow x\left(x-\dfrac{2}{5}\right)< 0\)
=>0<x<2/5
e: Ta có: E<0
\(\Leftrightarrow\dfrac{x-2}{x-6}< 0\)
=>2<x<6