Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ đkxđ: \(x+3\ge0\Leftrightarrow x\ge-3\)
b/ \(\left\{{}\begin{matrix}4x-1\ge0\\x\ne\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{4}\\x\ne\dfrac{1}{2}\end{matrix}\right.\)
c/ \(2-x^2>0\Leftrightarrow x^2< 2\Leftrightarrow-\sqrt{2}< x< \sqrt{2}\)
d/ \(6-x-x^2>0\Leftrightarrow\left(x+3\right)\left(2-x\right)>0\Leftrightarrow\left(x+3\right)\left(x-2\right)< 0\Leftrightarrow-3< x< 2\)
1) \(\sqrt{1+x^2}\) có nghĩa \(\Leftrightarrow1+x^2\ge0\)
ta có : \(x^2\ge0\forall x\) \(\Rightarrow x^2+1\ge1>0\forall x\)
vậy \(\sqrt{1+x^2}\) luôn luôn tồn tại với mọi x
2) \(\sqrt{\dfrac{1}{-1+x}}\)có nghĩa \(\Leftrightarrow\dfrac{1}{-1+x}>0\Leftrightarrow-1+x>0\Leftrightarrow x>1\)
vậy \(x>1\) thì \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa
3) \(\sqrt{\dfrac{2}{x^2}}\) có nghĩa \(\Leftrightarrow\dfrac{2}{x^2}>0\Leftrightarrow x^2>0\) nhưng \(x^2\ge0\forall x\) rồi \(\Rightarrow\) chỉ cần \(x\ne0\)
vậy \(x\ne0\) thì \(\sqrt{\dfrac{2}{x^2}}\) có nghĩa
4) \(\sqrt{\dfrac{-4}{x-3}}\) có nghĩa \(\Leftrightarrow\dfrac{-4}{x-3}>0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)
vậy \(x< 3\) thì \(\sqrt{\dfrac{-4}{x-3}}\) có nghĩa
5) \(\sqrt{\dfrac{-5}{x^2+6}}\) có nghĩa \(\Leftrightarrow\dfrac{-5}{x^2+6}>0\Leftrightarrow x^2+6< 0\)
nhưng \(x^2\ge0\forall x\) \(\Rightarrow x^2+6\ge6>0\forall x\) vậy không thể thảo mảng \(x^2+6< 0\)
vậy \(\sqrt{\dfrac{-5}{x^2+6}}\) không tồn tại
1, có nghĩa với mọi x
2, -1+x >0=> x>1
3, x# 0
4,x-3<0 => x<3
5, ko có gt nào của x thỏa mãn .
Giải:
a) Để biểu thức có nghĩa thì:
\(\dfrac{8x}{x^2+1}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8x\ge0\\x^2+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}8x\le0\\x^2+1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\in\varnothing\end{matrix}\right.\)
\(\Leftrightarrow x\ge0\)
b) Để biểu thức có nghĩa thì:
\(\dfrac{x^2-1}{x^2}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-1\ge0\\x^2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-1\le0\\x^2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>0\\x\in\varnothing\end{matrix}\right.\)
\(\Leftrightarrow x>0\)
Vậy ...
cai nay hinh nhu la co trong nang cao hat trien lo 8 thi phai cho
a/ Để căn thức có nghĩa thì
\(5-7x\ge0\Leftrightarrow-7x\ge-5\Leftrightarrow x\le\dfrac{5}{7}\)
b/ Để căn thức có nghĩ thì:
\(\dfrac{2}{x}\ge0\) mà (x khác 0) => x > 0
c/ Để căn thức có nghĩa thì:
\(\left\{{}\begin{matrix}x+3\ne0\\-\dfrac{2}{x+3}\ge0\end{matrix}\right.\)
\(\Rightarrow\dfrac{-2}{x+3}>0\Leftrightarrow x+3< 0\Leftrightarrow x< -3\)
d/ Để căn thức có nghĩa thì: \(\left\{{}\begin{matrix}3-x\ne0\\\dfrac{x-2}{3-x}\ge0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2\ge0\\3-x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2\le0\\3-x< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x< 3\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x>3\end{matrix}\right.\end{matrix}\right.\)<=> \(2\le x< 3\)
e/ Để căn thức có nghĩ thì:
\(x^2-x-12\ge0\)
\(\Leftrightarrow x^2+3x-4x-12\ge0\)
\(\Leftrightarrow x\left(x+3\right)-4\left(x+3\right)\ge0\)
\(\Leftrightarrow\left(x+3\right)\left(x-4\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\x-4\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0\\x-4\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-3\end{matrix}\right.\)
Vậy x >= 4 hoặc x<= 3 thì căn thức có nghĩa
\(a.Để:A=\sqrt{x-3}-\sqrt{\dfrac{1}{4-x}}\) xác định thì :
\(\left\{{}\begin{matrix}x-3\ge0\\4-x>0\end{matrix}\right.\)\(\Leftrightarrow3\le x< 4\)
\(b.Để:B=\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{x^2-4x+4}}=\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{\left(x-2\right)^2}}\)xác định thì :
\(x-1>0\Leftrightarrow x>1\)
Lời giải:
a) ĐK: \(\left\{\begin{matrix} x-2\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x-2>0\Leftrightarrow x>2\)
b) ĐK: \(\left\{\begin{matrix} x+2\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x\geq 2\)
c) ĐK: \(\left\{\begin{matrix} x^2-4\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-2)(x+2)\neq 0\\ x\geq 2\end{matrix}\right.\Leftrightarrow x>2\)
d) ĐK: \(3-2x>0\Leftrightarrow x< \frac{3}{2}\)
e) ĐK: \(2x+3>0\Leftrightarrow x> \frac{-3}{2}\)
f) ĐK: \(x+1< 0\Leftrightarrow x< -1\)
a/ đkxđ: \(\left\{{}\begin{matrix}x+1\ge0\\x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ne0\end{matrix}\right.\)
b/ đkxđ: \(\dfrac{1}{1-x}>0\Leftrightarrow1-x>0\Leftrightarrow x< 1\)
( vì 1 - x ≠ 0 mà 1 > 0 nên mk cho cả bt > 0 nhé )
c/ đkxđ: \(\dfrac{1}{1-x^2}\ge0\) và 1 - x2 ≠ 0
mà 1 > 0
=> 1 - x2 > 0 \(\Leftrightarrow\left(1-x\right)\left(1+x\right)>0\)
\(\Leftrightarrow-1< x< 1\)
d/ đkxđ: \(\dfrac{2x-4}{1+x^2}\ge0\) mà 1 + x2 > 0 ∀x
=> 2x - 4 ≥ 0
<=> 2x ≥ 4
<=> x ≥ 2
vậy...............
a/ ĐKXĐ: \(x\ge1\)
b/ ĐKXĐ: x \(\ge-1\) và x \(\ne3\)