\(\sqrt{\frac{x^2+1}{x-1}}\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

Giúp mk với các bn ơi.............mk cần gấp

10 tháng 7 2018

\(\sqrt{\frac{x^2+1}{x-1}}\) xác định <=> \(\frac{x^2+1}{x-1}\) >_0<=> x-1>_0<=> x>_ 1

Bài dễ vậy mà, học SGK là được

2 tháng 9 2019

\(2,\)

\(a,\sqrt{x^2-4x+3}=3\)

\(\Rightarrow x^2-4x+3=9\)

\(\Rightarrow x^2-4x-6=0\)

\(\Rightarrow\left(x-2\right)^2=10\)

\(\Rightarrow\orbr{\begin{cases}x-2=\sqrt{10}\\x-2=-\sqrt{10}\end{cases}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{10}\\x=2-\sqrt{10}\end{cases}}}\)

2 tháng 9 2019

\(a,x\ge0;x\ne1;B,x\ge0;x\ne9;C,x>0;x\ne4\)

\(d,x\ge0;x\ne25\)

2 tháng 7 2017

a, \(\sqrt{x^2-5}\) co nghia \(\Leftrightarrow x^2-5\ge0\Leftrightarrow x^2\ge5\Leftrightarrow\left|x\right|\ge\sqrt{5}\) 

b,\(\frac{1}{\sqrt{-x^2+4}}\) co nghia\(\Leftrightarrow-x^2+4>0\Leftrightarrow4>x^2\Leftrightarrow2>\left|x\right|\)

c,\(x+1>0\Leftrightarrow x>-1\)

d,\(\hept{\begin{cases}1\ne\sqrt{x-1}\left(1\right)\\\sqrt{x-1}\ge0\left(2\right)\end{cases}}\) giải 1 ta được \(x-1\ne1\Leftrightarrow x\ne2\) 

             giai2 ta duoc x\(\ge1\)

ket hop 1 va 2 ta duoc dkxd la \(x\ge1voix\ne2\)

11 tháng 8 2017

a, x \(\ne\)1

x > 2

7 tháng 9 2020

a) \(\sqrt{1-x^2}\) có nghĩa

\(\Leftrightarrow1-x^2\ge0\)

\(\Leftrightarrow\left(1-x\right)\left(x+1\right)\ge0\)

\(\Leftrightarrow-1\le x\le1\)

b) \(\sqrt{\frac{1}{\left(x-5\right)^2}}\)có nghĩa

\(\Leftrightarrow\frac{1}{\left(x-5\right)^2}>0\)

\(\Leftrightarrow x\ne5\)

Vậy .............

7 tháng 9 2020

a) Để \(\sqrt{1-x^2}\)có nghĩa 

    \(\Rightarrow\)\(1-x^2\ge0\)

  \(\Leftrightarrow\)\(\left(1-\sqrt{x}\right).\left(1+\sqrt{x}\right)\ge0\)

   Vì \(\sqrt{x}\ge0\forall x\)\(\Rightarrow\)\(\sqrt{x}+1\ge1>0\forall x\)

   mà \(\left(1-\sqrt{x}\right).\left(1+\sqrt{x}\right)\ge0\)

   \(\Rightarrow\)\(1-\sqrt{x}\ge0\)

  \(\Leftrightarrow\)\(\sqrt{x}\le1\)

  \(\Leftrightarrow\)\(x\le1\)

Vậy để \(\sqrt{1-x^2}\)có nghĩa thì \(x\le1\)

b) Để \(\sqrt{\frac{1}{\left(x-5\right)^2}}\)có nghĩa

    \(\Rightarrow\)\(\sqrt{\frac{1}{\left(x-5\right)^2}}\ge0\)

   \(\Leftrightarrow\)\(\frac{1}{\left|x-5\right|}\ge0\)

   Vì \(1>0\)mà \(\frac{1}{\left|x-5\right|}\ge0\)

   \(\Rightarrow\)\(\left|x-5\right|>0\)( vì là mẫu số )

  \(\Leftrightarrow\)\(x-5>0\)

  \(\Leftrightarrow\)\(x>5\)

 Vậy để \(\sqrt{\frac{1}{\left(x-5\right)^2}}\)có nghĩa thì \(x>5\)

30 tháng 8 2020

a) Ta có: \(\frac{x-\sqrt{x}}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)\sqrt{x}}{\sqrt{x}-1}\)

=> đk: \(x\ge0;x\ne1\)

b) đk: \(x\ge0\)

c) đk: \(x\ge-2\)

20 tháng 7 2017

potay.com

13 tháng 8 2017

em hổng có biết đâu vì em chưa hc lp 9 mới lại đề bài dài kinh khủng