Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để \(\frac{7}{x^2-x+1}\in Z\Leftrightarrow x^2-x+1\inƯ_7=\left\{\pm1;\pm7\right\}\)
nếu \(x^2-x+1=-7\Leftrightarrow x^2-x+8=0\left(vo nghiem\right)\)
nếu \(x^2-x+1=-1\Leftrightarrow x^2-x +2=0\left(vo nghiem\right)\)
nếu \(x^2-x+1=1\Leftrightarrow x^2-x=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases} }\)
nếu \(x^2-x+1=7\Leftrightarrow x^2-x-6=0\Leftrightarrow\hept{\begin{cases}x=3\\x=-2\end{cases} }\)
vậy \(x\in\left\{-2,0,1,3\right\}\)
Để \(\frac{7}{x^2-x+1}\)ta có : \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
hay \(7⋮\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Xét từng trường hợp :
TH1 : \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=1\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=\pm\frac{1}{2}\)
\(\Leftrightarrow x_1=\frac{1}{2}+\frac{1}{2}=1;x_2=-\frac{1}{2}+\frac{1}{2}=0\)( chọn )
TH2 : \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=-1\Leftrightarrow\left(x-\frac{1}{2}\right)^2=-\frac{7}{4}\)ko thỏa mãn
tương tự 2 trường hợp còn lại
\(\frac{x-1}{2}\cdot\frac{x+1}{2}\cdot(4x-1)\)
\(=\frac{\left(x-1\right)\left(x+1\right)\left(4x-1\right)}{2\cdot2}\)
\(=\frac{(x^2-1)\left(4x-1\right)}{4}\)
\(=\frac{4x^3-x^2-4x+1}{4}\)
Ta có : 6x2 - 11x + 3
= 6x2 - 2x - 9x + 3
= (6x2 - 2x) - (9x - 3)
= 2x(3x - 1) - 3(3x - 1)
= (2x - 3)(3x - 1)
\(a,ĐK:x^2-1=\left(x-1\right)\left(x+1\right)\ne0\Leftrightarrow x\ne\pm1\\ \dfrac{3x+3}{x^2-1}=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x-1}=2\\ \Leftrightarrow x-1=\dfrac{3}{2}\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\\ b,\dfrac{3}{x-1}\in Z\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\left(tm\right)\)
\(A=\frac{x+6}{x-2}\)ĐKXĐ : \(x\ne2\)
\(=\frac{x-2+8}{x-2}=\frac{8}{x-2}\)
Suy ra : \(x-2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)