\(C=\frac{5}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

a) thỏa mãn điều kiện thì \(\frac{5}{x-2}=1\)giá trị nhỏ nhất

\(\Rightarrow\frac{5}{5}=1\)

\(=\frac{5}{5+2}=7\)

\(\Rightarrow x=7\)

b) thõa mãn điều kiện thì \(\frac{x+5}{x-4}=2\)nhỏ nhất

\(\frac{x+5}{x-4}=2\Rightarrow2=\frac{18}{9}\)

\(\frac{18}{9}=\frac{18-5}{9+4}=13\)

\(\Rightarrow x=13\)

30 tháng 6 2018

1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy GTNN của A = -8 khi x=0, y=2.

b) Ta có: \(B=|x-3|+|x-7|\)

\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)

Vậy GTNN của B = 4 khi \(3\le x\le7\)

2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)

\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)

b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)

Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:

\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)

Bài 3: đề không rõ.

30 tháng 6 2018

Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)

Có \(x^4\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow A\ge0+0-8=-8\)

Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)

\(b,B=\left|x-3\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)

\(\Rightarrow B\ge\left|x-3+7-x\right|\)

\(\Rightarrow B\ge\left|-10\right|=10\)

Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)

22 tháng 7 2020

a) A = (x - 1)2 + 12

Do (x - 1)2 \(\ge\)\(\forall\)

=> (x - 1)2 + 12 \(\ge\)12 \(\forall\)x

Dấu "="xảy ra <=> x - 1 = 0 <=> x = 1

Vậy MinA = 12 khi  x = 1

b) B = |x + 3| + 2020

Do |x + 3| \(\ge\)\(\forall\)x

=> |x + 3| + 2020 \(\ge\)2020 \(\forall\)x

Dấu "=" xảy ra <=> x + 3 = 0 <=> x = -3

Vậy MinB = 2020 khi x = -3

(c;d max hay min ?)

22 tháng 7 2020

a) \(A=\left(x-1\right)^2+12\ge12\left(\forall x\right)\)

\("="\Leftrightarrow x=1\)

b) \(B=\left|x+3\right|+2020\ge2020\left(\forall x\right)\)

\("="\Leftrightarrow x=-3\)

c) \(C=\frac{5}{x-2}\ge\frac{5}{-1}=-5\left(\forall x\right)\)

\("="\Leftrightarrow x=1\)

d) \(D=\frac{x+5}{x-4}=1+\frac{9}{x-4}\ge1+\frac{9}{-1}=-8\left(\forall x\right)\)

\("="\Leftrightarrow x=3\)

6 tháng 5 2018

Bài 1:

Gọi UCLN (14n+17;21n+25) là d

ta có: 14 n +17 chia hết cho d => 3.(14n+17) chia hết cho d => 42n + 51 chia hết cho d

        21 +25 chia hết cho d => 2.( 21+25) chia hết cho d => 42n + 50 chia hết cho d

=> 42n + 51 - 42n - 50 chia hết cho d

=> 1 chia hết cho d

=> \(A=\frac{14n+17}{21n+25}\)là phân số tối giản

Bài 2:

Để B đạt giá trị lớn nhất => 5/ (x-3)^2 + 1 = 5

=> (x-3)^2 + 1 = 1

(x-3)^2           = 0 = 0^2

=> x - 3          = 0

x = 3

KL: x = 3 để B đạt giá trị lớn nhất

                        GIÚP MÌNH VỚI !!!  AI GIÚP MÌNH ĐẦU TIÊN CẢ CHỖ NÀY MÌNH SẼ TICK KIỆT LIỆT CHO NGƯỜI ĐÓ NHABài 1: Chứng minh rằng:a)A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\)b) B=\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}< 2\)c)C=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)d) D=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\) Bài 2: cho biểu...
Đọc tiếp

                        GIÚP MÌNH VỚI !!!  AI GIÚP MÌNH ĐẦU TIÊN CẢ CHỖ NÀY MÌNH SẼ TICK KIỆT LIỆT CHO NGƯỜI ĐÓ NHA

Bài 1: Chứng minh rằng:

a)A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\)

b) B=\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}< 2\)

c)C=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)

d) D=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)

 

Bài 2: cho biểu thức: A=\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)

Chứng tỏ : \(\frac{1}{2}< A< 1\)

Bài 3: Tìm x biết:

a) \(\frac{1}{6}.x+\frac{1}{12}.x+\frac{1}{20}.x+...+\frac{1}{2450}.x=1\)

b)\(\left|2\frac{2}{9}-x\right|=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)

 

Bài 4: Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất:

a) A=\(\left(x-1^2\right)+2018\) 

b) B= |x+4| +1930

c)C=\(\frac{5}{x-2}\)

d)D=\(\frac{x+5}{x-4}\)

 

Bài 5 Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất:

a) P=2017-(x+1)2018

b) Q=1010-|3-x|

c) C=\(\frac{5}{\left(x-3\right)^2+1}\)

d)D=\(\frac{4}{\left|x-2\right|+2}\)

 

Bài 6: Cho biết 3a +2b chia hết cho 17 . Chứng minh rằng: 10a+b chia hết cho 17 (a,b\(\in\)\(ℤ\))

Bài 7: Chứng minh rằng 3x+5y\(⋮\)\(\Leftrightarrow\)x+4y\(⋮\)7 (x,y\(\in\)\(ℤ\))

GIÚP MÌNH NHA SAU ĐÓ AI GIÚP DC CHO MÌNH HẾT CHỖ NÀY SẼ CÓ THƯỞNG ĐÓ !!!!

 

 

 

0
 GIÚP MÌNH VỚI !!!  AI GIÚP MÌNH ĐẦU TIÊN CẢ CHỖ NÀY MÌNH SẼ TICK KIỆT LIỆT CHO NGƯỜI ĐÓ NHABài 1: Chứng minh rằng:a)A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\)b) B=\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}< 2\)c)C=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)d) D=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\) Bài 2: cho biểu thức:...
Đọc tiếp

 GIÚP MÌNH VỚI !!!  AI GIÚP MÌNH ĐẦU TIÊN CẢ CHỖ NÀY MÌNH SẼ TICK KIỆT LIỆT CHO NGƯỜI ĐÓ NHA

Bài 1: Chứng minh rằng:

a)A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\)

b) B=\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}< 2\)

c)C=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)

d) D=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)

 

Bài 2: cho biểu thức: A=\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)

Chứng tỏ : \(\frac{1}{2}< A< 1\)

Bài 3: Tìm x biết:

a) \(\frac{1}{6}.x+\frac{1}{12}.x+\frac{1}{20}.x+...+\frac{1}{2450}.x=1\)

b)\(\left|2\frac{2}{9}-x\right|=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)

 

Bài 4: Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất:

a) A=\(\left(x-1^2\right)+2018\) 

b) B= |x+4| +1930

c)C=\(\frac{5}{x-2}\)

d)D=\(\frac{x+5}{x-4}\)

 

Bài 5 Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất:

a) P=2017-(x+1)2018

b) Q=1010-|3-x|

c) C=\(\frac{5}{\left(x-3\right)^2+1}\)

d)D=\(\frac{4}{\left|x-2\right|+2}\)

 

Bài 6: Cho biết 3a +2b chia hết cho 17 . Chứng minh rằng: 10a+b chia hết cho 17 (a,b\(\in\)\(ℤ\))

Bài 7: Chứng minh rằng 3x+5y\(⋮\)\(\Leftrightarrow\)x+4y\(⋮\)7 (x,y\(\in\)\(ℤ\))

GIÚP MÌNH NHA SAU ĐÓ AI GIÚP DC CHO MÌNH HẾT CHỖ NÀY SẼ CÓ THƯỞNG ĐÓ !!!!

7
22 tháng 4 2018

CÁC BN GIÚP MK VS NHA !!!!! MK DAG CẦN CỰC KỲ GẤP ĐÓ Ạ , AI GIẢI DC HẾT CHỖ NÀY SẼ DC K 3 CÁI ĐÓ Ạ !!!! CÁM ƠN MỌI NGƯỜI TRƯỚC Ạ ^^

22 tháng 4 2018

\(a)\) Ta có : 

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(A=1-\frac{1}{2^{100}}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

\(\left(3x-1\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)

\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)

\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)

27 tháng 12 2018

a, ĐỂ \(\frac{24}{2n+5}\)là số nguyên 

\(\Rightarrow24⋮2n+5\Rightarrow2n+5\inƯ\left(24\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)

2n + 5 = 1 => 2n = -4 => n = -2 

2n + 5 = -1 => n = -3 

... tương tự thay vào nhé ! 

1 tháng 8 2018

LẠM DỤNG QUÁ NHIỀU

29 tháng 4 2019

đổi k ko,mk hứa sẽ k lại(nếu ko làm chó!!!!!!!!!!!!!)

29 tháng 4 2019

Bài 1: <Cho là câu a đi>:

a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\) 

\(\rightarrow x+1=50\rightarrow x=49\) 

Vậy x = 49.