K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

a) 5x.(x+3/4) = 0

=> x = 0

x+3/4 = 0 => x = -3/4

b) \(\frac{x+7}{2010}+\frac{x+6}{2011}=\frac{x+5}{2012}+\frac{x+4}{2013}.\)

\(\Rightarrow\frac{x+7}{2010}+\frac{x+6}{2011}-\frac{x+5}{2012}-\frac{x+4}{2013}=0\)

\(\frac{x+7}{2010}+1+\frac{x+6}{2011}+1-\frac{x+5}{2012}-1-\frac{x+4}{2013}-1=0\)

\(\left(\frac{x+7}{2010}+1\right)+\left(\frac{x+6}{2011}+1\right)-\left(\frac{x+5}{2012}+1\right)-\left(\frac{x+4}{2013}+1\right)=0\)

\(\frac{x+2017}{2010}+\frac{x+2017}{2011}-\frac{x+2017}{2012}-\frac{x+2017}{2013}=0\)

\(\left(x+2017\right).\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)

=> x + 2017 = 0

x = -2017

13 tháng 10 2018

a) để 2x - 3 > 0

=> 2x > 3

x > 3/2

b) 13-5x < 0

=> 5x < 13

x < 13/5

c) \(\frac{x+3}{2x-1}>0\)

=> x + 3 > 0

x > -3

d) \(\frac{x+7}{x+3}=\frac{x+3+4}{x+3}=1+\frac{4}{x+3}\)

Để x+7/x+3 < 1

=> 1 + 4/x+3 < 1

=> 4/x+3 < 0

=> không tìm được x thỏa mãn điều kiện

12 tháng 4 2019

1. Ta có \(|3x-1|=\frac{1}{2}\)

\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)

Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha

Sai thì thôi nha bn mik cx chưa lm dạng này bh

13 tháng 4 2019

Câu 1:

\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)

\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)

\(=x^2+9x+1\)

Ta có: \(\left|3x-1\right|=\frac{1}{2}\)

TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)

\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)

TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)

\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)

1: \(M\left(x\right)=A\left(x\right)-2B\left(x\right)+C\left(x\right)\)

\(=2x^5-4x^3+x^2-2x+2-2x^5+4x^4-2x^2+10x-6+C\left(x\right)\)

\(=4x^4-4x^3-x^2+8x-4+x^4+4x^3+3x^2-8x+\dfrac{67}{16}\)

\(=5x^4+2x^2+\dfrac{3}{16}\)

2: \(M\left(-0.5\right)=5\cdot\left(-\dfrac{1}{2}\right)^4+2\cdot\left(-\dfrac{1}{2}\right)^2+\dfrac{3}{16}=1\)

Để A có giá trị nguyên thì x-5\(⋮\)x-3

<=> (x-3)-2\(⋮\)x-3

<=> -2\(⋮\)x-3

=> x-3\(\in\){1,-1,2,-2}

<=> x\(\in\){4,2,5,1}

Bài 1: 

a: \(x^2+5x=x\left(x+5\right)\)

Để biểu thức này âm thì \(x\left(x+5\right)< 0\)

hay -5<x<0

b: \(3\left(2x+3\right)\left(3x-5\right)< 0\)

\(\Leftrightarrow-\dfrac{3}{2}< x< \dfrac{5}{3}\)

3 tháng 10 2021

còn bài 2 nữa ạ.