Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,f\left(x\right)=\sqrt{2x-7}\)
\(f\left(x\right)\) có nghĩa \(\Leftrightarrow2x-7\ge0\Leftrightarrow x\ge\dfrac{7}{2}\)
\(b,f\left(x\right)=\sqrt{-3x+4}\)
\(f\left(x\right)\) có nghĩa \(\Leftrightarrow-3x+4\ge0\Leftrightarrow x\le\dfrac{4}{3}\)
\(c,f\left(x\right)=\sqrt{1+x^2}\)
\(f\left(x\right)\) có nghĩa \(\Leftrightarrow1+x^2\ge0\)
Mà \(1+x^2\ge0\) với mọi x \( \left(x^2\ge0\Rightarrow x^2+1\ge0\right)\)
\(\sqrt{1+x^2}\) có nghĩa với mọi x
a) ĐKXĐ: \(-x-8\ge0\Leftrightarrow x\le-8\)
b) ĐKXĐ: \(x^2-2x+1>0\Leftrightarrow\left(x-1\right)^2>0\Leftrightarrow x\ne1\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\5-x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)
d) ĐKXĐ: \(x^2+3\ge0\left(đúng.do.x^2+3\ge3>0\right)\)
a) để biểu thức có nghĩa thì \(\dfrac{2x-8}{x^2+1}\ge0\) mà \(x^2+1>0\)
\(\Rightarrow2x-8\ge0\Rightarrow x\ge4\)
b) để biểu thức có nghĩa thì \(\dfrac{-x^2-3}{8x+10}\ge0\) mà \(-x^2-3=-\left(x^2+3\right)< 0\)
\(\Rightarrow8x+10< 0\Rightarrow x< -\dfrac{5}{4}\)
c) để biểu thức có nghĩa thì \(x^2-2x+1>0\Rightarrow\left(x-1\right)^2>0\Rightarrow x\ne1\)
a) ĐKXĐ: \(x\ge4\)
b) ĐKXĐ: \(x< -\dfrac{5}{4}\)
c) ĐKXĐ: \(x\ne1\)
a) Để \(\dfrac{6}{3-x}\) có nghĩa thì \(3-x\ne0\Leftrightarrow x\ne3\)
b) Để \(\dfrac{-5}{4-2x}\) có nghĩa thì \(4-2x\ne0\Leftrightarrow x\ne2\)
a) Biểu thức có nghĩa `<=> {(x-2>=0),(x-4>=0):} <=> {(x>=2),(x>=4):} <=> x>=4`
b) Biểu thức có nghĩa `<=> {(x+1>=0),(\sqrt(x+1)\ne1):} <=> {(x>=1),(x \ne 0):} <=> x >=1`
c) Biểu thức có nghĩa `<=> x^2-4x+3 >=0 <=> (x-1)(x-3) >= 0 <=> [(x>=3),(x<=1):}`
a) Biểu thức có nghĩa \(\Leftrightarrow-x^5\ge0\)
\(\Leftrightarrow x^5\le0\) \(\Leftrightarrow x\le0\)
Vậy với \(x\le0\) thì biểu thức \(\sqrt{-x^5}\) có nghĩa
b) Biểu thức có nghĩa \(\Leftrightarrow-\left|x-2\right|\ge0\)
\(\Leftrightarrow\left|x-2\right|\le0\) (1)
Vì \(\left|x-2\right|\ge0\) \(\forall x\) (2)
Từ (1) và (2) \(\Rightarrow\left|x-2\right|=0\) \(\Leftrightarrow x-2=0\) \(\Leftrightarrow x=2\)
Vậy với \(x=2\) thì biểu thức \(\sqrt{-\left|x-2\right|}\) có nghĩa
c) \(ĐKXĐ:x\ne3\)
Biểu thức có nghĩa \(\Leftrightarrow\dfrac{10}{\left(x-3\right)^2}\ge0\)
\(\Leftrightarrow\dfrac{10}{\left(x-3\right)^2}>0\) \(\Leftrightarrow\left(x-3\right)^2>0\) ( do \(10>0\) )
Vì \(\left(x-3\right)^2\ge0\) \(\forall x\)
\(\Rightarrow\) Để \(\left(x-3\right)^2>0\) thì \(x-3\ne0\) \(\Leftrightarrow x\ne3\)
So sánh với ĐKXĐ ta thấy \(x\ne3\) thỏa mãn
Vậy với \(x\ne3\) thì biểu thức \(\sqrt{\dfrac{10}{\left(x-3\right)^2}}\) có nghĩa
1)
a) \(\sqrt{2x-4}\) có nghĩa khi:
\(2x-4\ge0\)
\(\Leftrightarrow2x\ge4\)
\(\Leftrightarrow x\ge\dfrac{4}{2}\)
\(\Leftrightarrow x\ge2\)
b) \(\sqrt{\dfrac{-7}{4-x}}\) có nghĩa khi
\(\dfrac{-7}{4-x}\ge0\) mà \(-7< 0\)
\(\Rightarrow4-x\le0\)
\(\Leftrightarrow x\ge4\)
a, \(x\ge\frac{3}{2}\)
b, với mọi x
c, x khác 0
d,với mọi x
e, x khác 0