Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)
\(2^x.2^2.3^x.3.5^x=10800\)
\(\Rightarrow\left(2.3.5\right)^x.12=10800\)
\(\Rightarrow30^x=\frac{10800}{12}=900\)
\(\Rightarrow30^x=30^2\)
\(\Rightarrow x=2\)
b,\(3^{x+2}-3^x=24\)
\(\Rightarrow3^x\left(3^2-1\right)=24\)
\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)
2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu bằng xảy ra khi \(ab\ge0\)
Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)
Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)
Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)
d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)
Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)
Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)
\(\Rightarrow B\le1\)
Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)
\(\Rightarrow x\le2017\)
Vậy \(Max_B=1\) khi \(x\le2017\)
để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)
suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)
Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3
\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))
Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!
\(a,\frac{-24}{x}+\frac{18}{x}=\frac{-24+18}{x}=\frac{-6}{x}\)
\(\Leftrightarrow x\inƯ(-6)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(b,\frac{2x-5}{x+1}=\frac{2x+2-7}{x+1}=\frac{2(x+1)-7}{x+1}=2-\frac{7}{x+1}\)
\(\Leftrightarrow7⋮x+1\Leftrightarrow x+1\inƯ(7)=\left\{\pm1;\pm7\right\}\)
Xét các trường hợp rồi tìm được x thôi :>
\(c,\frac{3x+2}{x-1}-\frac{x-5}{x-1}=\frac{3x+2-x-5}{x-1}=\frac{2x+7}{x-1}=\frac{2x-2+9}{x-1}=\frac{2(x-1)+9}{x-1}=2+\frac{9}{x-1}\)
\(\Leftrightarrow9⋮x-1\Leftrightarrow x-1\inƯ(9)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2;10;-8\right\}\)
d, TT
1,b, 2xy - x = y + 5
<=> 4xy - 2x = 2y + 10
<=> 2x(2y - 1) - (2y - 1) = 11
<=> (2x - 1)(2y - 1) = 11
Lập bảng ra làm nốt
\(1,c,\frac{1}{x}-3=-\frac{1}{y-2}\)
\(\Leftrightarrow y-2-3x\left(y-2\right)=-x\)
\(\Leftrightarrow y-2-3xy+6x+x=0\)
\(\Leftrightarrow-3xy+7x+y-2=0\)
\(\Leftrightarrow-x\left(3y-7\right)+y-2=0\)
\(\Leftrightarrow-3x\left(3y-7\right)+3y-6=0\)
\(\Leftrightarrow-3x\left(3y-7\right)+\left(3y-7\right)=-1\)
\(\Leftrightarrow\left(1-3x\right)\left(3y-7\right)=-1\)
Lập bảng làm nốt
Bài 1:
a)\(\left(2x+5\right)\left(6y-7\right)=13\)
=>2x+5 và 6y-7 thuộc Ư(13)={13;1;-1;-13}
- Với 2x+5=13 =>x=4 =>6y-7=1 =>y=4/3 (loại)
- Với 2x+5=-13 =>x=-9 =>6y-7=-1 =>y=1 (tm)
- Với 2x+5=-1 =>x=-3 =>6y-7=-13 =>y=-1 (tm)
- Với 2x+5=1 =>x=-2 =>6y-7=13=13 =>y=10/3 (loại)
Vậy các cặp số nguyên (x;y) thỏa mãn là (-9,1);(-3;-1)
2)xy+x+y=0
=>xy+x+y+1=1
=>(xy+x)+(y+1)=1
=>x(y+1)+(y+1)=1
=>(x+1)(y+1)=1
Sau đó bn =>x+1 và y+1 thuộc Ư(1) rồi tính như trên nhé
c)xy-x-y+1=0
=>(x-1)y-x+1=0
=>(x-1)y-x-0+1=0
=>(x-1)(y-1)=0
- Với x-1=0 =>x=1 thì mọi y thuộc Z đều thỏa mãn (vì đề chỉ cho thuộc Z)
- Với y-1=0 =>y=1 thì mọi x thuộc Z đều thỏa mãn
d và e bn phân tích ra tính tương tự
Bài 2:
a)\(A=\frac{x+5}{x+1}=\frac{x+1+4}{x+1}=\frac{x+1}{x+1}+\frac{4}{x+1}=1+\frac{4}{x+1}\in Z\)
=>4 chia hết x+1
=>x+1 thuộc Ư(4)={1;-1;2;-2;4;-4}
Bạn thay x+1={1;-1;2;-2;4;-4} vào rồi tính tiếp
b)\(=\frac{2x+4}{x+3}=\frac{2\left(x+3\right)-2}{x+3}=\frac{2\left(x+3\right)}{x+3}-\frac{1}{x+3}=2-\frac{1}{x+3}\in Z\)
=>2 chia hết x+3
=>x+3 thuộc Ư(2)={1;-1;2-2} tự làm nhé
c)\(C=\frac{4x+4}{2x+4}=\frac{2\left(2x+4\right)-4}{2x+4}=\frac{2\left(2x+4\right)}{2x+4}-\frac{4}{2x+4}=2-\frac{4}{2x+4}\in Z\)
=>4 chia hết 2x+4
=>2x+4 thuộc Ư(4)={1;-1;2;-2;4;-4} tự tính tiếp nhé
a) biểu thức nguyên khi 5 chia hết cho 4-x
\(\Rightarrow4-x=Ư\left(5\right)=\left\{-5;-1;1;5\right\}\)
Từ đó suy ra x
b) \(\frac{8x-1}{4x-1}=\frac{2\left(4x-1\right)+1}{4x-1}=\frac{2\left(4x-1\right)}{4x-1}+\frac{1}{4x-1}=2+\frac{1}{4x-1}\)
Do đó biểu thức nguyên khi 1/(4x-1) nguyên, tương tự câu a
c) Tương tự câu b