Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10x + 15 / 5x+1 =2x. (5x+ 1) + 13/ 5x + 1
= 1 + 2x + 13 / 5x + 1 để A/frac/ 2x + 13/ 5x+1 nhận giá trị nguyên thì :
2x + 13 phải chia hết cho 5x +1 , ta có :
2x + 13 = 5x +1
=> 2x + 5x = 13 +1
=> 7x =14
=> x= 2
Vậy x = 2 thì A có giá trị nguyên
\(A=\frac{10x+15}{5x+1}=\frac{2\left(5x+1\right)+13}{5x+1}=\frac{2\left(5x+1\right)}{5x+1}+\frac{13}{5x+1}\)
\(\Rightarrow5x+1\inƯ\left(13\right)=\left(-13;-1;1;13\right)\)
Ta có: \(5x+1=-13\Rightarrow x=-\frac{14}{5}\left(loại\right)\)
\(5x+1=-1\Rightarrow x=-\frac{2}{5}\left(loại\right)\)
\(5x+1=1\Rightarrow x=0\left(chọn\right)\)
\(5x+1=13\Rightarrow x=\frac{12}{5}\left(loại\right)\)
Vậy x=0
a, F(\(x\)) = (-2 + \(\dfrac{2}{5}\)\(x\) + 1).(\(x\) - 2024)
-2 + \(\dfrac{2}{5}\)\(x\) + 1 = 0 ⇒ \(\dfrac{2}{5}\)\(x\) = 1 ⇒ \(x\) = \(\dfrac{5}{2}\);
\(x\) - \(2024\) = 0 ⇒ \(x\) = 2024
Lập bảng xét dấu ta có:
\(x\) | \(\dfrac{5}{2}\) 2024 |
\(x\) - 2024 | - - 0 + |
- 2 + \(\dfrac{2}{5}\)\(x\) + 1 | - 0 + + |
F(\(x\)) | + 0 - 0 + |
Theo bảng trên ta có: F(\(x\)) > 0 ⇔ \(\left[{}\begin{matrix}\dfrac{5}{2}>x\\2024< x\end{matrix}\right.\)
b,F(\(x\) ) = \(\dfrac{x-2}{x+5}\)
\(x\) - 2 = 0 ⇒ \(x\) = 2; \(x\) + 5 = 0 ⇒ \(x\) = -5
Lập bảng xét dấu ta có:
\(x\) | -5 2 |
\(x-2\) | - - 0 + |
\(x+5\) | - 0 + 0 + |
F(\(x\)) | + 0 - 0 + |
Theo bảng trên ta có: F(\(x\)) > 0 ⇔ \(\left[{}\begin{matrix}x< -5\\x>2\end{matrix}\right.\)
Ta có : A = x2 + 5x
=> A = x(x + 5)
Để A nhận gt âm thì sảy ra 2 trường hợp
Th1 : \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x>-5\end{cases}\Rightarrow}-5< x< 0}\)
Th2 : \(\hept{\begin{cases}x>0\\x+5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< -5\end{cases}}}\) (loại)
Dương với 0 tương tự
Ta có: \(D=5x^2+2y^2=0\)
Vì \(x^2\ge0\) với \(\forall x\)
=> \(5x^2\ge0\) với \(\forall x\)
\(y^2\ge0\) với \(\forall y\)
\(\Rightarrow2y^2\ge0\) với \(\forall y\)
\(\Rightarrow\left\{{}\begin{matrix}5x^2=0\\2y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy khi x=0, y=0 thì biểu thức \(D=5x^2+2y^2=0\)
Ta có 10x + 15 = 10x + 2 +13
để A nhận giá trị là số nguyên thì 10x+15 chia hết cho 5x+1 hay 10x+2+13 chia hết cho 5x+1 mà 10x+2 chia hết cho 5x+1 nên 13 chia hết cho 5x+1 suy ra 5x+1 thuộc Ư(13)
ma U(13) = {-13;-1;1;13} suy ra 5x + 1 thuoc { -13;-1;1;13}
vì x nguyên nên ta có bảng sau
5x+1 | -13 | -1 | 1 | 13 |
x | -14/5 | -2/5 | 0 | 12/5 |
n/xét | loai | loai | chon | loai |
vậy với x = 0 thì A nhận giá tri nguyên
Ta có 10x + 15 = 10x + 2 +13
để A nhận giá trị là số nguyên thì 10x+15 chia hết cho 5x+1 hay 10x+2+13 chia hết cho 5x+1 mà 10x+2 chia hết cho 5x+1 nên 13 chia hết cho 5x+1 suy ra 5x+1 thuộc Ư(13)
ma U(13) = {-13;-1;1;13} suy ra 5x + 1 thuoc { -13;-1;1;13}
vì x nguyên nên ta có bảng sau
5x+1 | -13 | -1 | 1 | 13 |
x | -14/5 | -2/5 | 0 | 12/5 |
n/xét | loai | loai | chon | loai |
vậy với x = 0 thì A nhận giá tri nguyên
\(A=\frac{5}{2}x+1\) \(B=0,4x-5\)
a) \(A=\frac{5}{2}.\frac{1}{5}+1\) \(B=0,4.\left(-10\right)-5\)
\(A=\frac{1}{2}+1=1\) \(B=-4-5=-9\)
bài 1 :
B=15-3x-3y
a) x+y-5=0
=>x+y=-5
B=15-3x-3y <=> B=15-3(x+y)
Thay x+y=-5 vào biểu thức B ta được :
B=15-3(-5)
B=15+15
B=30
Vậy giá trị của biểu thức B=15-3x-3y tại x+y+5=0 là 30
b)Theo đề bài ; ta có :
B=15-3x-3.2=10
15-3x-6=10
15-3x=16
3x=-1
\(x=\frac{-1}{3}\)
Bài 2:
a)3x2-7=5
3x2=12
x2=4
x=\(\pm2\)
b)3x-2x2=0
=> 3x=2x2
=>\(\frac{3x}{x^2}=2\)
=>\(\frac{x}{x^2}=\frac{2}{3}\)
=>\(\frac{1}{x}=\frac{2}{3}\)
=>\(3=2x\)
=>\(\frac{3}{2}=x\)
c) 8x2 + 10x + 3 = 0
=>\(8x^2-2x+12x-3=0\)
\(\Rightarrow\left(2x+3\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\4x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{1}{4}\end{cases}}}\)
vậy \(x\in\left\{-\frac{3}{2};\frac{1}{4}\right\}\)
Bài 5 đề sai vì |1| không thể =2
để 5x-10x+5 thì 5x-10x+5 =0
(5-10)x+5=0
-5x+5=0
-5x=0-5
-5x=-5
x=-5:(-5)
x=1
vậy x=1 để biêu thức trên có giá trị bằng 0
\(5x^2-10x+5=0\)
\(\Leftrightarrow5\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow5\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)