K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2021

A=\(25x^2+3y^2-10x+11=\)\(\left(5x\right)^2-2.5.x+1^2+3y^2+10=\)\(\left(5x+1\right)^2+3y^2+10\ge10\)

(Vì\(\left(5x+1\right)^2\ge0\forall x\),\(3y^2\ge0\forall y\))

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{5},y=0\)

Vậy A max=10\(\Leftrightarrow x=\frac{-1}{5},y=0\)

22 tháng 8 2015

C=[(x+1)(x-6)][(x-2)(x-3)]

=(x2-5x-6)(x2-5x+6)

=(x2-5x)2-36>=-36

GTNN cua C=-36 tai x2-5x=0=>x(x-5)=0=>x=0 hoac x=5

18 tháng 6 2016

B=(x-3)2+(x-11)2

  =x2-6x+9+x2-22x+121

  =2x2-28x+130

  =2(x2-14x+65)

  =2(x2-2.7x+72-72+65)

  =2[(x-7)2-49+65]

  =2(x-7)2+32

=> vì 2(x-7)2 >= 0 

=>2(x-7)2+32 >= 32

=> GTNN của B=32. Khi x=7

20 tháng 7 2017

A=25x2+3y^2-10x+11

A=25x^2+3y^2-10x+1+10

A=(25x^2-10x+1)+3y^2+10

A=(5x-1)2+3y2+10

Vì (5x-1)> hoặc = 0 với mọi x thuộc Z

Vì 3,y^2 luôn > hoặc = 0 với mọi x thuộc Z => 3y2 luôn > hoặc = 0 với mọi x thuộc Z 

=> (5x-1)2+3y2> hoặc bằng o với mọi x thuộc Z

=> (5x-1)2+3y2+10 luôn lớn hơn hoặc bằng 10 với mọi x thuộc Z

           A               luôn lớn hơn hoặc bằng 10 với mọi x thuộc Z

=> Amin=10

Dấu "=" xảy ra <=>  (5x-1)2+3y2=0

                        =>  5x-1=0    

                        => 3y2=0

                       => x=\(\frac{1}{5}\)

                       => y=0

KL Amin=10 <=> x=\(\frac{1}{5}\);y=0 

11 tháng 10 2020

1/

( a + b )3 + ( a - b )3 - 6ab2 < đã sửa >

= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3 - 6ab2

= 2a3 

2/

A = x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y

Dấu "=" xảy ra khi x = 1 ; y = 2

=> MinA = 1 <=> x = 1 ; y = 2

B = 2x2 + 8x + 10 = 2( x2 + 4x + 4 ) + 2 = 2( x + 2 )2 + 2 ≥ 2 ∀ x

Dấu "=" xảy ra khi x = -2

=> MinB = 2 <=> x = -2

C = 25x2 + 3y2 - 10x + 11 = ( 25x2 - 10x + 1 ) + 3y2 + 10 = ( 5x - 1 )2 + 3y2 + 10 ≥ 10 ∀ x, y

Dấu "=" xảy ra khi x = 1/5 ; y = 0

=> MinC = 10 <=> x = 1/5 ; y = 0

D = ( x - 3 )2 + ( x - 11 )2

Đặt t = x - 7

D = ( t + 4 )2 + ( t - 4 )2

    = t2 + 8t + 16 + t2 - 8t + 16

    = t2 + 32 ≥ 32 ∀ t

Dấu "=" xảy ra khi t = 0

=> x - 7 = 0 => x = 7

=> MinD = 32 <=> x = 7

11 tháng 10 2020

Cảm ơn bn nhiều nhé!

5 tháng 7 2015

câu 1: Max

a) \(A=-\left(x^2-2x+1\right)+1=1-\left(x-1\right)^2\)

ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow-\left(x-1\right)^2\le0\Leftrightarrow1-\left(x-1\right)^2\le1\Rightarrow MaxA=1\Leftrightarrow x=1\)

b) \(B=18-\left(9x^2+6x+1\right)=18-\left(3x+1\right)^2\le18\Rightarrow MaxB=18\Leftrightarrow x=-\frac{1}{3}\)

câu 2: Min

c) \(C=\left(25x^2-10x+1\right)+3y^2+10=\left(5x-1\right)^2+3y^2+10\)

ta có: \(\left(5x-1\right)^2\ge0;3y^2\ge0\Rightarrow\left(5x-1\right)^2+3y^2\ge0\Leftrightarrow\left(5x-1\right)^2+3y^2+10\ge10\Rightarrow MinC=10\Leftrightarrow x=\frac{1}{5};y=0\)

 

 

 

18 tháng 5 2017

BÀi 1

D = 4x - 10 - x2= - (x2 - 4x +10) = - (x - 2 )- 6

Vì  - (x - 2 ) \(\le0\)nên - (x - 2 )- 6 \(\le-6< 0\)

Vậy D = 4x - 10 - x2 luôn âm (dpcm)

12 tháng 7 2018

\(A=x^2+3x+7\)

\(A=x^2+2x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+7\)

\(A=\left(x+\frac{3}{2}\right)^2-\frac{9}{4}+7\)

\(A=\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\)

Nhận xét: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=0\Rightarrow x=\frac{-3}{2}\)

Vậy \(minA=\frac{19}{4}\Leftrightarrow x=\frac{-3}{2}\)

Các câu khác lm tương tự nhé, lần sau đừng đưa nhiều câu cùng một lúc lên thế này, đưa từng câu một thôi thì bn sẽ có câu tl nhanh hơn đấy

12 tháng 7 2018

Uk.Mk nhớ rồi!