Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Ta có \(2n-1⋮n-3\) ( \(n\in Z\))
=> \(2\left(n-3\right)+5⋮n-3\)
=> 5\(⋮n-3\)
=> \(n-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
n-3 | -5 | -1 | 1 | 5 |
n | -2 | 2 | 4 | 8 |
Vậy \(n\in\left\{2;-2;4;8\right\}\)
Bài 1:
Ta có: (2n-1)/(n-3)=(2n-6+5)/(n-3)=2+5/(n-3)
Để 2n-1 chia hết cho n-3 thì 2+5/(n-3) phải thuộc Z mà 2 thuộc Z nên 5/(n-3) phải thuộc Z
Hay n-3 thuộc ước của 5 <=>(n-3) thuộc {-5;-1;1;5}
Có bảng:
n-3 | -5 | -1 | 1 | 5 |
n | -2 | 2 | 4 | 8 |
Nhận xét | TM | TM | TM | TM |
Vậy ...
| x + 3 | \(\ge\)0
\(\Rightarrow\)2015 + | x + 3 | \(\ge\)2015
\(\Rightarrow\)B nhỏ nhất \(\Leftrightarrow\)B = 2015 \(\Leftrightarrow\)| x + 3 | = 0 \(\Leftrightarrow\)x = -3
Do I x + 3I \(\ge\)0 => Để B nhỏ nhất => I x+3I = 0
=> 2015 + |x + 3| = 2015 => I x+3 I = 0 => x = 3
Vậy giá trị nhỏ nhất của Biểu thức B = 2015 + |x + 3| là 2015 khi x = 3
Đề GTLN A mình thấy nó sao sao ấy! Cần suy nghĩ thêm. Mà bạn cũng nên xem lại đề =))
\(B=1999+\left(x+2\right)^2+\left(y+3\right)^4\)
Ta có BĐT: Với n chẵn thì: \(a^n\ge0\)
Do vậy,ta có: \(\left(x+2\right)^2\ge0\)
\(\left(y+3\right)^4\ge0\)
Do đó \(B=1999+\left(x+2\right)^2+\left(y+3\right)^4\ge1999\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y+3\right)^4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}}\)
Vậy \(B_{min}=1999\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}\)
n+2 E Ư(6)
mà Ư(6)={-1;1;2;-2;3;-3;6;-6}
=>nE{-3;-1;0;-4;1;-5;4;-8}
vậy........
(-1)+3+(-5)+7+....+x = 600
<=> [(-1) + 3] + [(-5) + 7] .... + [(-x) - 2) + x] = 600
Ta co : 2 + 2 + 2 +.....+ 2 = 600
<=> 1 + 1 + 1 +.....+ 1 = 300
Số dấu ngoặc[ ] la : x−34 +1
=> x−34 +1=300
<=> x−34 =299
<=> x - 3 = 299 . 4 = 1199
Vậy x = 1199
Để \(\frac{4x-1}{x-3}\)có giá trị số nguyên thì \(4x-1⋮x-3\)
Ta có : 4x - 1 = 4(x - 3) + 11
Do \(x-3⋮x-3\)
Để \(4\left(x-3\right)+11⋮x-3\)thì \(11⋮x-3\)=> \(x-3\inƯ\left(\pm1;\pm11\right)\)
Với : x - 3 = 1 => x = 4
x - 3 = -1 => x = 2
x - 3 = 11 => x = 14
x - 3 = -11 => x = -8
Vậy x = {4; 2; 14; -8} thì \(\frac{4x-1}{x-3}\)có giá trị số nguyên