Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đè \(\sqrt{x^2+10x+21}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
Đk:\(x\ge-3\)
\(pt\Leftrightarrow\sqrt{\left(x+3\right)\left(x+7\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
Đặt \(\hept{\begin{cases}\sqrt{x+3}=a\\\sqrt{x+7}=b\end{cases}\left(a,b>0\right)}\) thì
\(\Leftrightarrow ab=3a+2b-6\)
\(\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\Rightarrow\orbr{\begin{cases}a=2\\b=3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x+3}=2\\\sqrt{x+7}=3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\) (thỏa)
Gọi \(A\left(x;0\right)\) là giao điểm của (d1) và (d2) trên trục Ox
\(\Rightarrow\)\(A\left(x;0\right)\) là nghiệm của hệ\(\left\{{}\begin{matrix}y=2mx+m+1\left(d_1\right)\\y=\left(m-1\right)x+3\left(d_2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}0=2mx+m+1\left(d_1\right)\\0=\left(m-1\right)x+3\left(d_2\right)\end{matrix}\right.\)
Dễ thấy tại \(\left(d_2\right)\) thì \(m\ne1\) (vì nếu m=0 thì khi đó 0=3 vô lý)
Hệ\(\Leftrightarrow\left\{{}\begin{matrix}0=2mx+m+1\\x=\dfrac{3}{1-m}\end{matrix}\right.\)\(\Rightarrow2m.\dfrac{3}{1-m}+m+1=0\)
\(\Leftrightarrow-m^2+6m+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3+\sqrt{10}\\m=3-\sqrt{10}\end{matrix}\right.\)(thỏa)
Vậy...