K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

= -2( x2 +2x/2 +1/4) +5 + 1/2

= -2(x+1/2)+ 5,5

GTLN = 5,5

mk làm tắt giỏi toán moi hieu

11 tháng 7 2016

\(-2x^2+x+5=-2\left(x^2-\frac{x}{2}\right)+5=-2\left(x^2-2.x.\frac{1}{4}+\frac{1}{16}\right)+\frac{1}{8}+5=-2\left(x-\frac{1}{4}\right)^2+\frac{41}{8}\le\frac{41}{8}\)Do đó Max = \(\frac{41}{8}\Leftrightarrow x=\frac{1}{4}\)

1 tháng 4 2018

a) * Nếu M ≥ a ⇔ 1 M ≤ 1 a ;

    * Nếu M ≤ a ⇔ 1 M ≥ 1 a ;

b) Ta có x 2 - 4x + 12 = ( x   -   2 ) 2  + 8 8 hay 1 x 2 + 2 x + 11 ≤ 1 10 ⇒ N ≥ − 1 2  

Giá trị nhỏ nhất của N = − 1 2  khi x = -1.

8 tháng 7 2019

Biểu thức:

\(A=\frac{2020-x}{6-x}=\frac{2014+6-x}{6-x}=\frac{2014}{6-x}+1\)

Để A đạt giá trị lớn nhất:

thì \(\frac{2014}{6-x}\)đạt giá trị lớn nhất

<=> \(\frac{2014}{6-x}>0\) và \(6-x\)đạt giá trị bé nhất

=> \(6-x=1\Leftrightarrow x=5\)

Lúc đó A đạt giá trị lớn nhất là: \(maxA=\frac{2014}{6-5}+1=2015\)

27 tháng 3 2020

bài này lớp 7 nha bn

12 tháng 4 2018

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

AH
Akai Haruma
Giáo viên
22 tháng 2 2021

Lời giải:

$x^2+2x+6=(x^2+2x+1)+5=(x+1)^2+5\geq 5$ với mọi $x\in\mathbb{R}$

Do đó: $P=\frac{1}{x^2+2x+6}\leq \frac{1}{5}$

Vậy $P_{\max}=\frac{1}{5}$. Giá trị đạt tại $x=-1$

NV
22 tháng 2 2021

\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)

\(P_{max}\) khi \(x+1=0\Leftrightarrow x=-1\)

21 tháng 10 2017

Ta có \(A=4-x^2+2x\) 

Nên GTLN của A là 4 

Vì GTLN của A là 4 nên \(x^2+2x=0\)

\(\Rightarrow x\left(x+2\right)=0\)

Để biểu thức trên có gia trị = 0 thì

x=0 hoặc x+2=0  Ta có x=0-2=-2

.Vậy A đạt giá trị lớn nhất khi x=0 hoặc x=-2

7 tháng 11 2017

\(A=-x^2+2x+4=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\le5,\forall x\).
Vậy GTLN của \(A=5\) khi \(-\left(x-1\right)^2=0\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\).

29 tháng 7 2015

Ta có 3-x2-2x = -( x2 +2x+1+2) 

                    = - (x+1)2 +2

Do  -(x+1)2 < 0 vs mọi x

=> -(x+1)2 +2 <2

=> Max 3-x2 -2x = 2 <=> x = -1

 

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

22 tháng 6 2021

a) đk x khác 0;2

P =  \(\dfrac{1}{x\left(x-2\right)}.\left(\dfrac{x^2+4}{x}-4\right)+1\)

\(\dfrac{1}{x\left(x-2\right)}.\dfrac{x^2-4x+4}{x}+1\)

\(\dfrac{1}{x\left(x-2\right)}.\dfrac{\left(x-2\right)^2}{x}+1\)

\(\dfrac{x-2}{x^2}+1\)

\(\dfrac{x^2+x-2}{x^2}\)

b) Để \(\left|2+x\right|=1\)

<=> \(\left[{}\begin{matrix}2+x=1< =>x=-1\left(tm\right)\\2+x=-1< =>x=-3\left(tm\right)\end{matrix}\right.\)

TH1: x = -1

Thay x = -1 vào P, ta có:

\(P=\dfrac{\left(-1\right)^2-1-2}{\left(-1\right)^2}=-2\)

TH2: x = -3

Thay x = -3 vào P, ta có:

\(P=\dfrac{\left(-3\right)^2-3-2}{\left(-3\right)^2}=\dfrac{4}{9}\)

c) P = \(1+\dfrac{x-2}{x^2}\)

Xét \(\dfrac{x^2}{x-2}=\dfrac{\left(x-2\right)^2+4\left(x-2\right)+4}{x-2}\)

\(\left(x-2\right)+\dfrac{4}{x-2}+4\)

Áp dụng bdt co-si, ta có:

\(\left(x-2\right)+\dfrac{4}{x-2}\ge2\sqrt{\left(x-2\right)\dfrac{4}{x-2}}=4\)

<=> \(\dfrac{x^2}{x-2}\ge4+4=8\)

<=> \(\dfrac{x-2}{x^2}\le\dfrac{1}{8}\)

<=> A \(\le\dfrac{9}{8}\)

Dấu "=" <=> x = 4