K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2021

ĐKXĐ: \(3-2x\ge0\Leftrightarrow x\le\dfrac{3}{2}\)

25 tháng 5 2021

b) ĐKXĐ: \(-1\le x\le3\)

c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\\x\ne3\end{matrix}\right.\).

d) ĐKXĐ: \(x< \dfrac{3}{5}\).

a: ĐKXĐ: x>0; x<>9

b: \(A=\dfrac{x+3\sqrt{x}+x-3\sqrt{x}}{x-9}:\dfrac{\sqrt{x}+3-3}{\sqrt{x}+3}\)

\(=\dfrac{2x}{x-9}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)

c: Để A=-1 thì 2 căn x=-căn x+3

=>x=1

21 tháng 10 2021

a) ĐKXĐ: \(x+5\ge0\Leftrightarrow x\ge-5\)

b) ĐKXĐ: \(7-x\ge0\Leftrightarrow x\le7\)

c) ĐKXĐ: \(x+3>0\Leftrightarrow x>-3\)

d) ĐKXĐ: \(x-3< 0\Leftrightarrow x< 3\)

28 tháng 8 2017

dấu  (-) là sang câu hỏi khác hay la chung 1 bài vậy bạn 

28 tháng 8 2017

dấu trừ đó Nguyễn trần thanh an

a: ĐKXĐ: (8x^2+3)/(x^2+4)>=0

=>\(x\in R\)

b: ĐKXĐ: -3(x^2+2)>=0

=>x^2+2<=0(vô lý)

d: ĐKXĐ: -x^2-2>2

=>-x^2>2

=>x^2<-2(vô lý)

d: ĐKXĐ: 4(3x+1)>=0

=>3x+1>=0

=>x>=-1/3

29 tháng 6 2023

\(a,\sqrt{\dfrac{8x^2+3}{4+x^2}}\) có nghĩa \(\Leftrightarrow\dfrac{8x^2+3}{4+x^2}\ge0\Leftrightarrow4+x^2\ge0\) (luôn đúng)

Vậy căn thức trên có nghĩa với mọi x.

\(b,\sqrt{-3\left(x^2+2\right)}\) có nghĩa \(\Leftrightarrow-3\left(x^2+2\right)\ge0\Leftrightarrow x^2+2\le0\Leftrightarrow x^2\le-2\) (vô lí)

Vậy không có giá trị x để căn thức có nghĩa.

\(c,\sqrt{4\left(3x+1\right)}\) có nghĩa \(\Leftrightarrow3x+1\ge0\Leftrightarrow3x\ge-1\Leftrightarrow x\ge-\dfrac{1}{3}\) 

Vậy không có giá trị x để căn thức có nghĩa.

\(d,\sqrt{\dfrac{5}{-x^2-2}}\) có nghĩa  \(\Leftrightarrow-x^2-2>0\Leftrightarrow x^2< -2\) (vô lí)

Vậy không có giá trị x để căn thức có nghĩa.

15 tháng 9 2023

a) \(x\ge0\)

b) \(x\le0\)

c) \(x\le4\)

d) \(\sqrt{x^2+1}>0\forall x\) => \(x\in R\)

15 tháng 9 2023

a)đẻ \(\sqrt{\dfrac{x}{3}}\) có nghĩa thì

\(\dfrac{x}{3}\ge0\\ \Leftrightarrow x\ge0\)

b) để \(\sqrt{-5x}\) có nghĩa thì 

\(-5x\ge0\\ \Leftrightarrow x\le0\)

c) để \(\sqrt{4-x}\) có nghĩa thì 

\(4-x\ge0\\ \Leftrightarrow x\le4\)

d) để \(\sqrt{1+x^2}\) có nghĩa thì

\(1+x^2\ge0\forall x\in R\)