Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)3.x^2 - 75 = 0
3.x^2 - 3.25 = 0
3.(x^2-25)=0
x^2-5^2=0
(x-5)(x+5)=0
=> x-5=0 hoặc x+5=0
=> x=5 hoặc x=-5
1) \(3x^2-75=0\)
\(\Leftrightarrow3\left(x^2-25\right)=0\)
\(\Leftrightarrow x^2-25=0\)
\(\Leftrightarrow x^2=25\)
\(\Leftrightarrow x=\pm\sqrt{25}=\pm5\)
2) \(x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
3) \(x^3+3x^2+3x=0\)
\(\Leftrightarrow x^3+3x^2+3x+1=1\)
\(\Leftrightarrow\left(x+1\right)^3=1^3\)
\(\Leftrightarrow x+1=1\Leftrightarrow x=0\)
a, 3x 3 - 3x = 0
=> 3x ( x 2 - 1 ) = 0
=> \(\orbr{\begin{cases}3x=0\\x^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}\Rightarrow[}\begin{cases}x=0\\x=1\\x=-1\end{cases}}\)
b, x ( x - 2 ) + ( x - 2 ) = 0
=> ( x - 2 ) ( x + 1 ) = 0
=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
c, 5x ( x - 2000 ) - x + 2000 = 0
=> ( x - 2000 ) ( 5x - 1 ) = 0
=> \(\orbr{\begin{cases}x-2000=0\\5x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2000\\x=\frac{1}{5}\end{cases}}}\)
\(x^3-3x^2+3x+63=0\)
\(\Rightarrow x^3-3x^2+3x-1+64=0\)
\(\Rightarrow\left(x-1\right)^3=-64\)
\(\Rightarrow x-1=-4\Rightarrow x=-3\)
làm nốt
d) (2x-1)(3x+2)(3-x)
=(6x2+x-2)(3-x)
=-6x3+17x2+5x-6
e) (x+3)(x2+3x-5)
=x3+6x2+4x-15
f) (xy-2)(x3-2x-6)
=x4y-2x3-2x2y-6xy+4x+12
g) (5x3-x2+2x-3)(4x2-x+2)
=20x5-9x4+19x3-16x2+7x-6
Bài 1:
a) (x-2)(x2+3x+4)
=x(5x+4)-2(5x+4)
= 5x2+4x-10x-8
=5x2-6x-8
\(\left(3x-5\right)\left(-2x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-5=0\\-2x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=5\\-2x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{-7}{2}\end{cases}}}\)
\(9x^2-1=\left(1+3x\right)\left(2x-3\right)\)
\(\Leftrightarrow9x^2-1=2x-3+6x^2-9x\)
\(\Leftrightarrow9x^2-1=-7x-3+6x^2\)
\(\Leftrightarrow9x^2-1+7x+3-6x^2=0\)
\(\Leftrightarrow3x^2+2+7x=0\)
\(\Leftrightarrow3x^2+6x+x+2=0\)
\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{3}\end{cases}}\)
1
a) x^2+2x-5 b) x^2+x+7 9 (dư 8)
2
x=2; x = -(3*căn bậc hai(7)*i+1)/2;x = (3*căn bậc hai(7)*i-1)/2;
3
a=2
a) 3x(x - 1) + 7x2(x - 1) = 0
<=> x(x - 1)(3 + 7x) = 0
<=> x = 0
hoặc : x - 1 = 0
hoặc 3 + 7x = 0
<=> x = 0
hoặc x = 1
hoặc x = -3/7
b) x2 - 2018x - 2019 = 0
<=> x2 - 2019x + x - 2019 = 0
<=> x(x - 2019) + (x - 2019) = 0
<=> (x + 1)(x - 2019) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x-2019=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\\x=2019\end{cases}}\)
c) (x + 3)2 - x(x - 2) = 13
<=> x2 + 6x + 9 - x2 + 2x = 13
<=> 8x = 13 - 9
<=> 8x = 6
<=> x= 6/8 = 3/4
a/\(3x\left(x-1\right)+7x^2\left(x-1\right)=0.\)
\(\Leftrightarrow\left(x-1\right)\left(3x+7x^2\right)=0\)
\(\Leftrightarrow\left(x-1\right)x\left(3+7x\right)=0\)
Th1: x - 1 = 0
=> x = 1
Th2: x= 0
Th3: 3 + 7x = 0
=> x= -3/7
\(\Rightarrow x\in\left\{1;0;-\frac{3}{7}\right\}\)
b/ \(x^2-2018x-2019=0\)
\(\Leftrightarrow x^2+x-2019x-2019=0\)
\(\Leftrightarrow\left(x^2+x\right)-\left(2019x+2019\right)=0\)
\(\Leftrightarrow x\left(x+1\right)-2019\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2019\right)\left(x+1\right)=0\)
Th1 : x -2019 = 0
=> x =2019
Th2: x + 1 =0
=> x = -1
\(\Rightarrow x\in\left\{2019;-1\right\}\)
c/ \(\left(x+3\right)^2-x\left(x-2\right)=13\)
\(\Leftrightarrow x^2+6x+9-x^2+2x=13\)
\(\Leftrightarrow8x=4\Rightarrow x=\frac{1}{2}\)
\(c.\:\left(3x+4\right)^2-\left(3x+1\right)\left(3x-1\right)\\ =9x^2+24x+16-9x^2+1\\ 40x=-1\\ x=-\dfrac{1}{40}\)
\(d.\:\left(3x-1\right)^2-\left(3x-2\right)^2=0\\ \left(3x-1+3x-2\right)\left(3x-1-3x+2\right)=0\\ \left(6x-3\right)=0\\ x=\dfrac{1}{2}\)
\(g.\:\left(2x+1\right)^2-\left(x-1\right)^2=0\\ \left(2x+1+x-1\right)\left(2x+1-x+1\right)=0\\ 3x\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
c,\(\left(3x+4\right)^2-\left(3x-1\right)\left(3x+1\right)=49\)
\(\Rightarrow9x^2+24x+16-\left(9x^2-1\right)=49\)
\(\Rightarrow9x^2+24x+16-9x^2+1=49\)
\(\Rightarrow24x=49-1-16\)
\(\Rightarrow24x=32\Rightarrow x=\dfrac{4}{3}\)
d, \(\left(3x-1\right)^2-\left(3x-2\right)^2=0\)
\(\Rightarrow\left(3x-1-3x+2\right).\left(3x-1+3x-2\right)=0\)
\(\Rightarrow6x-3=0\Rightarrow6x=3\Rightarrow x=\dfrac{1}{2}\)
e, \(\left(2x+1\right)^2-\left(x-1\right)^2=0\)
\(\Rightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
\(\Rightarrow\left(x+2\right).3x=0\Rightarrow x.\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Chúc bạn học tốt!!!
\(x^3-3x^2+3x+63=0\)
\(\Leftrightarrow x^3-3x^2+3x-1+64=0\)
\(\Leftrightarrow\left(x-1\right)^3+64=0\)
\(\Leftrightarrow\left(x-1\right)^3=-64\)
\(\Leftrightarrow x-1=-4\)
\(\Leftrightarrow x=-3\)
x3 +3x2-6x2-18x+21x+63=0
<=>x2(x+3)-6x(x+3)+21(x+3)=0
<=>(x2-6x+21)(x+3)=0
TH1:x2-6x+21=0
<=>x2-6x+9+12=0
<=>(x-3)2+12=0
<=>(x-3)2=-12 (vô lý)
<=>x thuộc rỗng
TH2: x+3=0
<=>x=-3
KL:...........