K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2020

\(x^3-3x^2+3x+63=0\Leftrightarrow x^3-3x^2+3x-1+64=0\Leftrightarrow\left(x-1\right)^3+64=0\Leftrightarrow\left(x-1\right)^3=-64\Leftrightarrow x-1=-4\Leftrightarrow x=-3\)

1 tháng 10 2020
\(x^3-3x^2+3x+63=0\)
\(\Leftrightarrow x^3-3x^2+3x-1+64=0\)
\(\Leftrightarrow\left(x-1\right)^3+64=0\)
\(\Leftrightarrow\left(x-1\right)^3=\left(-4\right)^3\)
\(\Leftrightarrow x-1=-4\)
\(\Leftrightarrow x=-3\)
Vậy \(x=-3\).
18 tháng 10 2018

       

     \(x^3-3x^2+3x+63=0\)

\(\Rightarrow x^3-3x^2+3x-1+64=0\)

\(\Rightarrow\left(x-1\right)^3=-64\)

\(\Rightarrow x-1=-4\Rightarrow x=-3\)

NV
25 tháng 6 2019

\(2x^4+3x^3-9x^2-3x+2\)

\(=2x^4+5x^3-2x^2-2x^3-5x^2+2x-2x^2-5x+2\)

\(=x^2\left(2x^2+5x-2\right)-x\left(2x^2+5x-2\right)-\left(2x^2+5x-2\right)\)

\(=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)

b/

\(x^4-3x^3-6x^2+3x+1\)

\(=x^4-4x^3-x^2+x^3-4x^2-x-x^2+4x+1\)

\(=x^2\left(x^2-4x-1\right)+x\left(x^2-4x-1\right)-\left(x^2-4x-1\right)\)

\(=\left(x^2+x-1\right)\left(x^2-4x-1\right)\)

NV
25 tháng 6 2019

c/

\(x^4-6x^3+12x^2-14x+3\)

\(=x^4-4x^3+x^2-2x^3+8x^2-2x+3x^2-12x+3\)

\(=x^2\left(x^2-4x+1\right)-2x\left(x^2-4x+1\right)+3\left(x^2-4x+1\right)\)

\(=\left(x^2-2x+3\right)\left(x^2-4x+1\right)\)

e/

Đề sai, sao có 2 hạng tử chứa \(x^4\) thế kia?

29 tháng 9 2020

1. <=> \(\left(3x+2\right)^3-\left(\left(3x\right)^3+2^3\right)=0\)

<=> \(\left(\left(3x\right)^3+2^3+3\left(3x+2\right).3x.2\right)-\left(\left(3x\right)^3+2^3\right)=0\)

<=>3 (3x + 2) . 3x.2 = 0 

<=> (3x + 2 ) . x = 0 

<=> x = -2/3 hoặc x = 0

2. Tương tự

29 tháng 9 2020

\(\left(3x+2\right)^3-\left[\left(3x\right)^3+2^3\right]=0\) 

\(\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot2+3\cdot3x\cdot2^2+2^3-\left(3x\right)^3-2^3=0\) 

\(54x^2+36x=0\)  

\(18x\left(3x+2\right)=0\) 

\(\orbr{\begin{cases}x=0\\3x+2=0\end{cases}}\) 

\(\orbr{\begin{cases}x=0\\x=\frac{-2}{3}\end{cases}}\) 

\(\left(2x+1\right)^3-\left[\left(2x\right)^3-1^3\right]=0\) 

\(\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3-\left(2x\right)^3-1^3=0\)  

\(12x^2+6x=0\) 

\(6x\left(2x+1\right)=0\)  

\(\orbr{\begin{cases}x=0\\2x+1=0\end{cases}}\)  

\(\orbr{\begin{cases}x=0\\x=\frac{-1}{2}\end{cases}}\)

31 tháng 7 2016

M = -x2 +3x + 3x + 9 - 8

M = -x .( -x -3 ) - 3 .( -x -3 ) - 8

M =( -x -3 ) . ( -x -3 ) - 8

M = ( -x -3 ) 2 -8 

Vì ( -x -3 )>= 0  suy ra  ( -x -3 ) 2 -8  >= -8

=> - ( -x -3)  + 8 <= 8 

dấu " = xẩy ra <=> -x -3 =0 <=> x = -3 

31 tháng 7 2016

khi đó GTLN M = 8 khi x = -3 

7 tháng 10 2016

a) \(x^3-3x^2-3x+1\)

\(=\left(x^3+1\right)-\left(3x^2+3x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)

\(=\left(x+1\right)\left(x^2-4x+1\right)\)

b) \(4x^2+4x+1-y^2-16y-64\)

\(=\left(2x+1\right)^2-\left(y+8\right)^2\)

\(=\left(2x+1-y-8\right)\left(2x+1+y+8\right)\)

\(=\left(2x-7-y\right)\left(2x+9+y\right)\)

c) \(x^3+3x^2+3x+1-27z^3\)

 \(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

d) \(\left(x^2+y^2-5\right)^2-4\left(x^2y^2+4xy+4\right)\) 

\(=\left(x^2+y^2-4-1\right)^2-4\left(xy+2\right)^2\)

\(=\left(x^2+y^2-5\right)^2-4\left(xy+2\right)^2\)

\(=\left(x^2+y^2-5\right)^2-\left(2xy+4\right)^2\)

\(=\left(x^2+y^2-5-2xy-4\right)\left(x^2+y^2-5+2xy+4\right)\)

 \(=\left[\left(x-y\right)^2-9\right]\left[\left(x+y\right)^2-1\right]\)

\(=\left(x-y-3\right)\left(x-y+3\right)\left(x+y-1\right)\left(x+y+1\right)\)

30 tháng 12 2019

\(x^4+x^3+3x^2+2x+2=0\)

\(\Leftrightarrow x^4-x^3+x^2+2x^2-2x+2\)

\(\Leftrightarrow x^2\left(x^2-x+1\right)+2\left(x^2-x+1\right)\)

\(\Leftrightarrow\left(x^2+2\right)\left(x^2-x+1\right)\)

\(\Leftrightarrow\left(x^2+2\right)\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)

\(\Leftrightarrow\left(x^2+2\right)\left[x-\frac{1}{2}^2\right]+\frac{3}{4}\)

Ta co: \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>\frac{3}{4}\)

\(\left(x^2+2\right)\left[\left(x-\frac{1}{2}^2\right)+\frac{3}{4}\right]\ge\frac{3}{2}\le0\)