Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+5x-3=2\left(x^2+\frac{5}{2}x-\frac{2}{3}\right)\)
\(=2\left(x^2+2.\frac{5}{4}x+\frac{25}{16}-\frac{107}{48}\right)\)
\(=2\left[\left(x+\frac{5}{4}\right)^2-\frac{107}{48}\right]\)
\(=2\left[\left(x+\frac{5}{4}\right)^2\right]-\frac{107}{24}\ge\frac{-107}{24}\)
Vậy \(A_{min}=\frac{-107}{24}\Leftrightarrow x+\frac{5}{4}=0\Leftrightarrow x=-\frac{5}{4}\)
a)\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6.\)
\(\Leftrightarrow x^2-4x+4-x^2+9-6=0\)
\(\Leftrightarrow-4x+7=0\)
\(\Leftrightarrow4x=7\Leftrightarrow x=1,75\)
\(b,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10.\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-4x^2+1-10=0\)
\(\Leftrightarrow-24x+27=0\)
\(\Leftrightarrow24x=27\Leftrightarrow x=1,125\)
a) (x - 3)(x2 + 3x + 9) + x(x + 2)(2 - x) = 1
=> x3 - 27 + x(4 - x2) = 1
=> x3 - 27 + 4x - x3 = 1
=> 4x - 27 = 1
=> 4x = 1 + 27
=> 4x = 28
=> x = 28 : 4 = 7
b) (x + 1)3 - (x - 1)3 - 6(x - 1)2 = -10
=>(x + 1 - x + 1)[(x + 1)2 + (x + 1)(x - 1) + (x - 1)2] - 6(x2 - 2x + 1) = -10
=> 2(x2 + 2x + 1 + x2 - 1 + x2 - 2x + 1) - 6x2 + 12x - 6 = -10
=> 2(3x2 + 1) - 6x2 + 12x - 6 = -10
=> 6x2 + 2 - 6x2 + 12x - 6 = -10
=> 12x - 4 = -10
=> 12x = -10 + 4
=> 12x = -6
=> x = -6 : 12 = -1/2
Bạn Nguyễn Minh Hiếu làm sai rồi ta có thể tách như vậy khi \(\left(x.1\right)^3\) nhưng đây là \(\left(x+1\right)^3\) nên bạn làm sai
\(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow x^3+2x^2+x+x^2+2x+1-x\left(x^2-2x+1\right)+x^2-2x+1-6x^2+12x-6=-10\)
\(\Leftrightarrow x^3-2x^2+13x-4-x\left(x^2-2x+1\right)=-10\)
\(\Leftrightarrow x^3-2x^3+13x-4-x^3+2x^2-x=-10\)
\(\Leftrightarrow12x-4=-10\)
\(\Leftrightarrow12x=-10+4\)
\(\Leftrightarrow12x=-6\)
\(\Leftrightarrow x=-\frac{6}{12}=-\frac{1}{2}\)
\(\Rightarrow x=-\frac{1}{2}\)
<=> \(^{x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10}\)
<=> \(x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6=-10\)
<=> 12x - 4 = -10
<=> 12x =-6
<=> x= \(\frac{-6}{12}=\frac{-1}{2}\)