Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\left(x+\frac{1}{6}\right)\left(x-6\right)\left(x+89\right)=0\)
\(\Leftrightarrow\) \(\hept{\begin{cases}x+\frac{1}{6}=0\\x-6=0\\x+89=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{6}\\x=6\\x=-89\end{cases}}\)
b. \(x^2+4x+4=0\Leftrightarrow\left(x+2\right)^2=0\)
\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
c. \(9x^2+6x+1=0\)
\(\Leftrightarrow\left(3x+1\right)^2=0\)
\(\Leftrightarrow3x+1=0\Leftrightarrow3x=-1\Leftrightarrow x=-\frac{1}{3}\)
a) \(\left(x+\frac{1}{6}\right)\left(x-6\right)\left(x+89\right)=0\)
\(\Leftrightarrow\)x+1/6 =0 hoặc x-6=0 hoặc +89=0
<=> x=-1/6 hoặc x=6 hoặc x=-89
b) \(x^2+4x+4=0\)
\(\Leftrightarrow\left(x+2\right)^2=0\)
<=> x+2=0
<=> x=-2
Đặt \(x-1=t\Rightarrow x=t+1\)
\(A=\dfrac{2\left(t+1\right)^2-6\left(t+1\right)+5}{t^2}=\dfrac{2t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+2=\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
\(A_{min}=1\) khi \(t=1\Rightarrow x=2\)
Ta có : \(x^2-2x-1=0
\)
\(\Leftrightarrow \)\((x-1)^2=2\)
\(\Leftrightarrow
\)\(\left[\begin{array}{}
x-1=\sqrt{2}\\
x-1=-\sqrt{2}
\end{array} \right.\)
Đặt P = \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
=\(\dfrac{(x^6-2x^5-x^4)-(4x^5-8x^4-4x^3)+(5x^4-10x^3-5x^2)-(2x^3-4x^2-2x)+(x^2-2x-1)+2016}
{(x^6-2x^5-x^4)+(2x^5-4x^4-2x^3)+(5x^4-10x^3-5x^2)+(4x^3-8x^2-4x)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{x^4(x^2-2x-1)-4x^3(x^2-2x-1)+5x^2(x^2-2x-1)-2x(x^2-2x-1)+(x^2-2x-1)+2016}
{x^4(x^2-2x-1)+2x^3(x^2-2x-1)+5x^2(x^2-2x-1)+4x(x^2-2x-1)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{2016}{12x + 2016}\)
=\(\dfrac{2016}{12(x+1)+2004}\)
=\(\dfrac{168}{x+1+167}\)
=\(\left[\begin{array}{}
\dfrac{168}{\sqrt{2}+167}\\
\dfrac{168}{-\sqrt{2}+167}
\end{array} \right.\)
Chú thích: Hình như mẫu là \(-6x\) chứ không phải \(6x
\) bạn ạ. Hay là mình phân tích sai thì cho mình xin lỗi nhé.
e) Ta có: x+1=x
\(\Leftrightarrow x-x=-1\)
hay 0=-1
Vậy: \(S_1=\varnothing\)(1)
Ta có: \(x^2+1=0\)
mà \(x^2+1>0\forall x\)
nên \(x\in\varnothing\)
Vậy: \(S_2=\varnothing\)(2)
Từ (1) và (2) suy ra hai phương trình x+1=x và \(x^2+1=0\) tương đương
dkxd:
\(x\ne3;x\ne-3\\ \frac{13-x}{x+3}+\frac{6x^2+6}{x^4_{ }-8x^2-9}-\frac{3x+6}{x^2+5x+6}-\frac{2}{x-3}=0\\ \Leftrightarrow\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{\left(x^2+1\right)\left(x^2-9\right)}-\frac{3\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{2}{x+3}=0\\ \Leftrightarrow\frac{13-x}{x+3}+\frac{6}{\left(x-3\right)\left(x+3\right)}-\frac{3}{x+3}-\frac{2}{x-3}=0\\ \Leftrightarrow\frac{\left(13-x\right)\left(x-3\right)+6-3\left(x-3\right)-2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=0\\ \Leftrightarrow\frac{-x^2+16x-39+6-3x+9-2x-6}{\left(x-3\right)\left(x+3\right)}=0\\ \Leftrightarrow-x^2+11x-30=0\\ \Leftrightarrow-\left(x-5\right)\left(x-6\right)=0\\ \Leftrightarrow\left[\begin{matrix}x=5\left(tmdkxd\right)\\x=6\left(tmdkxd\right)\end{matrix}\right.\)
Vay phuong trinh co tap nghiem la S={5;6}
a) Để biểu thức vô nghĩa thì \(\dfrac{3x-2}{5}-\dfrac{x-4}{3}=0\)
\(\Leftrightarrow\dfrac{3x-2}{5}=\dfrac{x-4}{3}\)
\(\Leftrightarrow3\left(3x-2\right)=5\left(x-4\right)\)
\(\Leftrightarrow9x-6=5x-20\)
\(\Leftrightarrow9x-5x=-20+6\)
\(\Leftrightarrow4x=-14\)
\(\Leftrightarrow x=-\dfrac{7}{2}\)
a/\(\dfrac{8}{x-8}+1+\dfrac{11}{x-11}+1=\dfrac{9}{x-9}+1+\dfrac{10}{x-10}+1\)
=>\(\dfrac{8+x-8}{x-8}+\dfrac{11+x-11}{x-11}=\dfrac{9+x-9}{x-9}+\dfrac{10+x-10}{x-10}\)
=>\(\dfrac{x}{x-8}+\dfrac{x}{x-11}-\dfrac{x}{x-9}-\dfrac{x}{x-10}=0\)
=>x.\(\left(\dfrac{1}{x-8}+\dfrac{1}{x-11}+\dfrac{1}{x-9}+\dfrac{1}{x-10}\right)=0\)
=>x=0
b/\(\dfrac{x}{x-3}-1+\dfrac{x}{x-5}-1=\dfrac{x}{x-4}-1+\dfrac{x}{x-6}-1\)
=>\(\dfrac{x-x+3}{x-3}+\dfrac{x-x+5}{x-5}-\dfrac{x-x+4}{x-4}-\dfrac{x-6+6}{x-6}=0\)
=>\(\dfrac{3}{x-3}+\dfrac{5}{x-5}-\dfrac{4}{x-4}-\dfrac{6}{x-6}=0\)
Đến đây thì bạn giải giống câu a
b: =>1/4x+4/5-x-5=1/3x+1-1/2x+1
=>-3/4x+1/6x=2+5-4/5=24/5
=>x=-288/35
c: =>6x^2+3x-30x-15=6x^2+10x-21x-35
=>-27x-15=-11x-35
=>-16x=-20
=>x=5/4
\(\dfrac{x^2+4+6}{5-6x}< 0\)
Nhận xét:
\(x^2\ge0,\forall x\)
\(\Rightarrow x^2+4+6\ge10,\forall x\)
Do đó \(\dfrac{x^2+4+6}{5-6x}< 0\) khi và chỉ khi:
\(5-6x< 0\)
\(\Leftrightarrow6x>5\)
\(\Leftrightarrow x>\dfrac{5}{6}\)
Vậy \(x>\dfrac{5}{6}\)
Sửa đề:
Do (x + 2)² ≥ 0
(x + 2)² + 2 > 0
5 - 6x < 0
-6x < -5