Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
a/ \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)-3x^2\) \(=0\)
<=> \(2x^2-8x+3x-12+x^2-2x-5x+10-3x^2=0\)
<=> \(-12x-2=0\)
<=> \(-12x=2\)
<=> \(x=\frac{-1}{6}\)
b/ \(7\left(x-1\right)-\left(x-2\right)\left(3-x\right)-x^2=3\)
<=> \(7x-7-\left(3x-x^2-6+2x\right)-x^2=3\)
<=> \(7x-7-3x+x^2+6-2x-x^2=3\)
<=> \(2x=4\)
<=> \(x=2\)
CHÚC BN HỌC TỐT
1.
a) \(\frac{x+2}{2x-3}< 0\) ( ĐKXĐ : x ≠ 3/2 )
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+2< 0\\2x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -2\\x>\frac{3}{2}\end{cases}}\)( loại )
9. \(\hept{\begin{cases}x+2>0\\2x-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-2\\x< \frac{3}{2}\end{cases}}\Leftrightarrow-2< x< \frac{3}{2}\)
=> Với \(-2< x< \frac{3}{2}\)thì tmđb
b) \(\frac{x\left(x-2\right)}{x^2+3}>0\)
Vì x2 + 3 ≥ 3 > 0 ∀ x
nên ta chỉ cần xét x( x - 2 ) > 0
1. \(\hept{\begin{cases}x>0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x>2\end{cases}}\Leftrightarrow x>2\)
2. \(\hept{\begin{cases}x< 0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x< 2\end{cases}}\Leftrightarrow x< 0\)
Vậy \(\orbr{\begin{cases}x>2\\x< 0\end{cases}}\)thì tmđb
2.
A = x2 + 4x = x( x + 4 )
Để A dương => A > 0
<=> x( x + 4 ) > 0
Xét hai trường hợp
1. \(\hept{\begin{cases}x>0\\x+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x>-4\end{cases}}\Leftrightarrow x>0\)
2. \(\hept{\begin{cases}x< 0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x< -4\end{cases}}\Leftrightarrow x< -4\)
Vậy với \(\orbr{\begin{cases}x>0\\x< -4\end{cases}}\)thì tmđb
B = ( x - 3 )( x + 7 )
Để B dương => B > 0
<=> ( x - 3 )( x + 7 ) > 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}x-3>0\\x+7>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>3\\x>-7\end{cases}}\Leftrightarrow x>3\)
2. \(\hept{\begin{cases}x-3< 0\\x+7< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 3\\x< -7\end{cases}}\Leftrightarrow x< -7\)
Vậy với \(\orbr{\begin{cases}x>3\\x< -7\end{cases}}\)thì tmđb
C = ( 1/2 - x )( 1/3 - x )
Để C dương => C > 0
<=> ( 1/2 - x )( 1/3 - x ) > 0
Xét hai trường hợp
1. \(\hept{\begin{cases}\frac{1}{2}-x>0\\\frac{1}{3}-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x>-\frac{1}{2}\\-x>-\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< \frac{1}{3}\end{cases}}\Leftrightarrow x< \frac{1}{3}\)
2. \(\hept{\begin{cases}\frac{1}{2}-x< 0\\\frac{1}{3}-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x< -\frac{1}{2}\\-x< -\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>\frac{1}{3}\end{cases}}\Leftrightarrow x>\frac{1}{2}\)
Vậy với \(\orbr{\begin{cases}x< \frac{1}{3}\\x>\frac{1}{2}\end{cases}}\)thì tmđb
1/a, f(x) - g(x) + h(x) = x3 - 2x2 + 3x +1 - x3 - x + 1 +2x2 - 1
=(x3 - x3) + (-2x2 + 2x2) + (3x - x) + (1 + 1 - 1)
=2x + 1
b, f(x) - g(x) + h(x) = 0
<=> 2x + 1 = 0
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2 là nghiệm của đa thức f(x) - g(x) + h(x)
2/ a, 5x + 3(3x + 7)-35 = 0
<=> 5x + 9x + 21 - 35 = 0
<=> 14x - 14 = 0
<=> 14(x - 1) = 0
<=> x-1 = 0
<=> x = 1
Vậy 1 là nghiệm của đa thức 5x + 3(3x + 7) -35
b, x2 + 8x - (x2 + 7x +8) -9 =0
<=> x2 + 8x - x2 - 7x - 8 - 9 =0
<=> (x2 - x2) + (8x - 7x) + (-8 -9)
<=> x - 17 = 0
<=> x =17
Vậy 17 là nghiệm của đa thức x2 + 8x -(x2 + 7x +8) -9
3/ f(x) = g (x) <=> x3 +4x2 - 3x + 2 = x2(x + 4) + x -5
<=> x3 +4x2 - 3x + 2 = x3 + 4x2 + x - 5
<=> -3x + 2 = x - 5
<=> -3x = x - 5 - 2
<=> -3x = x - 7
<=>2x = 7
<=> x = 7/2
Vậy f(x) = g(x) <=> x = 7/2
4/ có k(-2) = m(-2)2 - 2(-2) +4 = 0
=> 4m + 4 + 4 = 0
=> 4m + 8 = 0
=> 4m = -8
=> m = -2
a)11/12 - (2/5 + x)= 2/3
2/5+x=11/12-2/3
2/5+x=1/4
x=1/4-2/5
x=-3/20
b) 2.x (x- 1/7)= 0
2x^2-2/7=0
2x^2=2/7
x^2=1/7
x=\(\sqrt{\frac{1}{7}}\) ;_\(\sqrt{\frac{1}{7}}\)
c)3/4+1/4:x=2/5
1/4:x=2/5-3/4=-7/20
x=1/4:-7/20=-5/7
d, (x- 1/2)2 =0
x-1/2=0
x=1/2
e, (2x -1)3= -8=(-2)^3
2x-1=-2
2x=-2+1=-1
x=-1/2
Bài 1:
a) -6x + 3(7 + 2x)
= -6x + 21 + 6x
= (-6x + 6x) + 21
= 21
b) 15y - 5(6x + 3y)
= 15y - 30 - 15y
= (15y - 15y) - 30
= -30
c) x(2x + 1) - x2(x + 2) + (x3 - x + 3)
= 2x2 + x - x3 - 2x2 + x3 - x + 3
= (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3
= 3
d) x(5x - 4)3x2(x - 1) ??? :V
Bài 2:
a) 3x + 2(5 - x) = 0
<=> 3x + 10 - 2x = 0
<=> x + 10 = 0
<=> x = -10
=> x = -10
b) 3x2 - 3x(-2 + x) = 36
<=> 3x2 + 2x - 3x2 = 36
<=> 6x = 36
<=> x = 6
=> x = 5
c) 5x(12x + 7) - 3x(20x - 5) = -100
<=> 60x2 + 35x - 60x2 + 15x = -100
<=> 50x = -100
<=> x = -2
=> x = -2