K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2015

x(x-3)-x(x+1)=12

<=>x2-3x-x2-x=12

<=>-4x=12

<=>x=-3

25 tháng 9 2016

\(x^2\left(x+1\right)+\left(x+1\right)=y^3\)

\(\left(x+1\right)\left(x^2+1\right)=y^3\)

\(\left(x+1\right)\left(x^2+1\right)-y^3=0\)

\(\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x^2=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\kothoaman\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=-1\\y^3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

Vậy x = -1, y =0

1 tháng 10 2017

\(x^3+x^2=36\)

\(\left(x^3\right)^2\)=36

\(x^6\)=\(6^6\)

Vậy x=6

1 tháng 8 2021

x(x+1)-(x-1)(x+2)=8

\(\Leftrightarrow\)\(x^2+x-x^2-2x+x+2=8\)

\(\Leftrightarrow0x=6\left(ptvn\right)\)

\(\Rightarrow S=\varnothing\)

 

4 tháng 11 2017

\(\text{x.(3x+2)+(x+1)^2-(2x-5)(2x+5)=-12}\\ \Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=-12\\ \Leftrightarrow4x=-38\\ \Leftrightarrow x=-\dfrac{19}{2}\)

29 tháng 9 2018

x(x² + x + 1) = 4y(y + 1)

<=> (x + 1)(x² + 1) = (2y + 1)²

Dễ dàng thấy là: x + 1 và x² + 1 nguyên tố cùng nhau nên x + 1 và x² + 1 là 2 số chính phương.

=> x²; x² + 1 là 2 số chính phương liên tiếp 

=> x = 0; y = 0 hoặc y = - 1

4 tháng 10 2019

Ta có: \(x+2\sqrt{2}.x^2+2x^3=0\)

\(\Leftrightarrow x\left(1+2\sqrt{2}.x+2x^2\right)=0\)

\(\Leftrightarrow x\left[1^2+2.x\sqrt{2}.1+\left(x\sqrt{2}\right)^2\right]=0\)

\(\Leftrightarrow x\left(1+x\sqrt{2}\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\1+x\sqrt{2}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{\sqrt{2}}\end{cases}}\)

Vậy\(x\in\left\{0;\frac{-1}{\sqrt{2}}\right\}\)

4 tháng 10 2019

\(x+2\sqrt{2}x^2+2x^3=0\)

\(x\left(1+2\sqrt{2}x+2x^2\right)=0\)

\(x\left(2\sqrt{2}x+1\right)^2=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2\sqrt{2}x+1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2x\sqrt{2}}\end{cases}}\)