\(x^2-4x+4>0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

Ta có : x2 - 4x + 4 

= x2 - 2.x.2 + 22

= (x - 2)2

Mà (x - 2)\(\ge0\forall x\)

=> x2 - 4x + 4 \(>0\) khi x \(\ne2\)

27 tháng 6 2017

\(x^2-4x+4>0.\)

\(\Leftrightarrow\left(x-2\right)^2>0\)

Vì \(\left(x-2\right)^2\ge0\)nên để \(\left(x-2\right)^2>0\)thì

\(\left(x-2\right)^2\ne0\)

\(\Leftrightarrow x-2\ne0\)

\(\Leftrightarrow x\ne2\)

Vây tập nghiệm của bất phương trình là {\(x\)|\(x\ne2\)}

13 tháng 7 2018

mị thấy cũng đơn giản mà sao lại hỏi

13 tháng 7 2018

Mị tự học ở nhà, mà bài này lớp 8 (chưa học đến) hơi không hiểu nên mới hỏi :3

1 tháng 9 2020

a) x3 + 3x2 + 3x + 1 = 64

=> (x + 1)3 = 64

=> (x + 1)3 = 43

=> x + 1 = 4 => x = 3

b) x3 + 6x2 + 9x = 4x

=> x3 + 6x2 + 9x - 4x = 0

=> x3 + 6x2 + 5x = 0

=> x3 + 5x2 + x2 + 5x = 0

=> x2(x + 5) + x(x + 5) = 0

=> (x + 5)(x2 + x) = 0

=> (x + 5)x(x + 1) = 0

=> \(\hept{\begin{cases}x=-5\\x=0\\x=-1\end{cases}}\)

c) 4(x - 2)2 = (x + 2)2

=> 4(x2 - 4x + 4) = x2 + 4x + 4

=> 4x2 - 16x + 16 = x2 + 4x + 4

=> 4x2 - 16x + 16 - x2 - 4x - 4 = 0

=> 3x2 - 20x + 12 = 0

=> 3x2 - 18x - 2x + 12 = 0

=> 3x(x - 6) - 2(x - 6) = 0

=> (x - 6)(3x - 2) = 0

=> \(\orbr{\begin{cases}x=6\\x=\frac{2}{3}\end{cases}}\)

d) x4 - 16x2 = 0

=> x2(x2 - 16) = 0

=> \(\orbr{\begin{cases}x^2=0\\x^2=16\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)

e) x4 - 4x3 + x2 - 4x = 0

=> x4 + x2 - 4x3 - 4x = 0

=> x2(x2 + 1) - 4x(x2 + 1) = 0

=> (x2 - 4x)(x2 + 1) = 0

=> x(x - 4)(x2 + 1) = 0

=> \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)(vì x2 + 1 \(\ge\)1 > 0 \(\forall\)x)

f) x3 + x = 0 => x(x2  + 1) = 0 => x = 0 (vì x2 + 1 \(\ge1>0\forall\)x)

1 tháng 9 2020

\(a,x^3+3x^2+3x+1=64\)

\(\left(x+1\right)^3=64\)

\(\left(x+1\right)^3=4^3\)

\(x+1=4\)

\(x=3\)

5 tháng 8 2017

a, x2 - 2x + 3 > 0

Xét : VT = x2 - 2x + 1 + 2 = ( x - 1 )2 + 2 .

Có : ( x - 1 )2 \(\ge\) 0 với mọi x \(\Rightarrow\) ( x - 1 )2 + 2 > 0 với mọi x hay

VT > 0 .

Vậy BĐT x2 - 2x + 3 > 0 đúng .

Các câu còn lại tương tự .

Chúc bn học tốt !!!!!!!!hihi

4 tháng 4 2018

a.Ta có : \(\dfrac{x^2-4x+4}{x^3-2x^2-4x+8}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\)

Để \(\dfrac{1}{x+2}>0\) thì 1 và x+2 cùng dấu

mà 1>0

=>x + 2 > 0 <=> x > 2

\(\Rightarrow S=\left\{x|x>2\right\}\)

b, Ta có : \(x^2\ge0\Rightarrow x^2+1>0\)

Để \(\dfrac{7-8x}{x^2+1}>0\) thì 7 - 8x và \(x^2+1\) cùng dấu

\(x^2+1>0\Rightarrow7-8x>0\Leftrightarrow x< \dfrac{7}{8}\)

\(\Rightarrow S=\left\{x|x< \dfrac{7}{8}\right\}\)

c. Ta có bảng xét dấu:

x -\(\infty\) -1 -\(\dfrac{1}{2}\) +\(\infty\)
x+1 - 0 + +
2x+1 - - 0 +
\(\dfrac{2x+1}{x+1}\) + \(//\) - 0 +

4 tháng 4 2018

Bổ xung câu c:

Vậy : \(-1< x\le\dfrac{-1}{2}\)

29 tháng 10 2017

a) ( 4x - 1 ) ( x - 2 ) = 0

\(\Leftrightarrow\orbr{\begin{cases}4x-1=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=2\end{cases}}\)

Vậy \(x\in\left\{\frac{1}{4};2\right\}\)

b) 4x2 - 12x = 0

<=> 4x ( x - 3 ) = 0

\(\Leftrightarrow\orbr{\begin{cases}4x=0\\x-3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x=3\end{cases}}\)

Vậy \(x\in\left\{0;3\right\}\)

c) ( x - 5 )4 + 25 - x2 = 0

( x - 5 ) 4 + ( 5 - x ) ( 5 + x ) = 0

( x - 5 ) ( 4 + 5 + x ) = 0

( x - 5 ) ( 9 + x ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\9+x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-9\end{cases}}\)

Vậy \(x\in\left\{-9;5\right\}\)

29 tháng 10 2017

a)x=0,25,x=2

b)x=3,x=0

23 tháng 7 2017

a. \(x^2+3x+5\)

\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

=> đpcm

23 tháng 7 2017

b. \(4x^2+5x+7\)

\(=\left(2x\right)^2-2.2x.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{87}{16}\)

= \(\left(2x+\dfrac{5}{4}\right)^2\) + \(\dfrac{87}{16}\) \(\ge\dfrac{87}{16}\)

=> đpcm

21 tháng 7 2017

a) \(\left(x+17\right).\left(25-x\right)=0\)

\(\Leftrightarrow x+17=0\)hoặc \(25-x=0\)

Từ \(x+17=0\Rightarrow x=0-17=-17\)

Từ \(25-x=0\Rightarrow x=25-0=25\)

Vậy \(x=-17\) hoặc \(25\)

23 tháng 6 2018

Bài 1 : Tạm thời ko biết giải -_- 

Bài 2 : 

\(a)\) Đặt \(A=x^2+x+1\) ta có : 

\(A=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

Vậy \(A>0\) với mọi x, y 

\(b)\) Đặt \(B=-4x^2-4x-2\) ta có : 

\(-B=4x^2+4x+2\)

\(-B=\left(4x^2+4x+1\right)+1\)

\(-B=\left(2x+1\right)^2+1\ge1\)

\(B=-\left(2x+1\right)^2-1\le-1< 0\)

Vậy \(B< 0\) với mọi x, y 

\(c)\) Đặt \(C=x^2+xy+y^2+1\) ta có : 

\(8C=8x^2+8xy+8y^2+8\)

\(8C=\left(4x^2+8xy+4y^2\right)+4x^2+4y^2+1\)

\(8C=\left(2x+2y\right)^2+\left(2x\right)^2+\left(2y\right)^2+1\ge1\)

\(C=\frac{\left(2x+2y\right)^2+\left(2x\right)^2+\left(2y\right)^2+1}{8}\ge\frac{1}{8}>0\)

Vậy \(C>0\) với mọi x, y 

Chúc bạn học tốt ~ 

23 tháng 6 2018

Aigiúpmìnhbài1với =)))

Mơnlắm =))))