K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

\(\Rightarrow\)  x^2 + x + x + 1 + 2014 = 0

\(\Rightarrow\) x(x+1) + (x+1) + 2014 = 0

\(\Rightarrow\) (x+1)(x+1) + 2014 = 0

\(\Rightarrow\) (x+1)^2 + 2014 = 0

Mà (x+1)^2 \(\ge\) 0 nên (x+1)^2 + 2014 \(\ge\) 2014

Vậy ko có giá trị nào của x thỏa mãn

chúc bạn thi tốt ở kì thi học kì 2 này 

a: \(\left(2x-3\right)^{2012}+\left(y-\dfrac{2}{5}\right)^{2014}+\left|x+y-z\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\y-\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{2}{5}\\z=\dfrac{19}{10}\end{matrix}\right.\)

b: 2015-|x-2015|=x

=>|x-2015|=2015-x

=>x-2015<=0

hay x<=2015

d: |x-999|+|1998-2x|=0

=>x-999=0

hay x=999

14 tháng 1 2015

(x-2015)^x+1 - (x-2015)^x+2015

=>x-2015= 0;1;-1

x-2015=0 =>x=2015

x-2015=1 =>x=2016

x-2015=-1 =>x=2014

2 tháng 10 2017

Mik đang cần gấp có ai giúp mik với

a)Ta có:\(\left(2x^2+1\right)\left(x-1\right)\left(x+2\right)\le0\Rightarrow\left(x-1\right)\left(x+2\right)\le0\)(Do\(2x^2+1>0\)

suy ra x-1 và x+2 trái dấu

Mà x-1<x+2

\(\Rightarrow\hept{\begin{cases}x-1\le0\Rightarrow x\le1\\x+2\ge0\Rightarrow x\ge-2\end{cases}}\)

\(\Rightarrow-2\le x\le1\)

b)Ta có Nếu \(x\ge2\Rightarrow x^{2016}\ge2^{2016}>2015\left(L\right)\)

Do đó x<2 mà\(x\inℕ\)

\(\Rightarrow x\in\left\{0;1\right\}\)

Với x=0 thì y=2015/2013(Loại)

Với x=1 thì y=2014/2013(Loại)

Vậy...............

19 tháng 1 2020

                                                             Bài giải

a, \(\left(2x^2+1\right)\left(x-1\right)\left(x+2\right)\le0\)

Do \(\left(2x^2+1\right)\ge0\)

Nên để tích trên bé hơn hoặc bằng 0 thì \(\left(x-1\right)\) và \(\left(x+2\right)\) trái dấu hoặc bằng 0

Mà \(x-1< x+2\)

\(\Rightarrow\hept{\begin{cases}x-1< 0\\x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}}\Rightarrow\text{ }-2\le x\le1\)

Mà \(x\in N\text{ }\Rightarrow\text{ }x\in\left\{0\text{ ; }1\right\}\)

21 tháng 11 2016

a)Đặt \(A=2^{2016}+2^{2015}+...+2^1+2^0\)

\(2A=2\left(1+2+...+2^{2016}\right)\)

\(2A=2+2^2+...+2^{2017}\)

\(2A-A=\left(2+2^2+...+2^{2017}\right)-\left(1+2+...+2^{2016}\right)\)

\(A=2^{2017}-1\) thay vào ta có:

\(A=2^{2017}-\left(2^{2017}-1\right)=2^{2017}-2^{2017}+1=1\)

b)Ta thấy: \(\left|x\left(x-4\right)\right|\ge0\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)

Ta có: \(x\left|x-4\right|=x\left(x\ge0\right)\)

  • Nếu x=0 thì 0|0-4|=0 (đúng)
  • Nếu x\(\ne\)0 thì ta có \(\left|x-4\right|=1\Leftrightarrow x-4=\pm1\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=5\\x=3\end{array}\right.\)

Vậy x=0;x=5;x=3 (thỏa mãn)

 

 

 

 

21 tháng 11 2016

a) Đặt \(B=2^{2016}+2^{2015}+...+2^1+2^0\)

\(\Rightarrow B=1+2+...+2^{2015}+2^{2016}\)

\(\Rightarrow2B=2+2^2+...+2^{2016}+2^{2017}\)

\(\Rightarrow2B-B=\left(2+2^2+...+2^{2016}+2^{2017}\right)-\left(1+2+...+2^{2015}+2^{2016}\right)\)

\(\Rightarrow B=2^{2017}-1\)

\(A=2^{2017}-B\)

\(\Rightarrow A=2^{2017}-\left(2^{2017}-1\right)\)

\(\Rightarrow A=1\)

Vậy A = 1