Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (x+2)2-16=0
=> (x+2)2 =0+16=16
=> (x+2)2 = 42
=> x+2 =4
=> x = 4-2=2
nhớ tk nha
a. Ta có: \(x^2-10x+26+y^2+2y=0\Leftrightarrow\left(x^2-10x+25\right)+\left(y^2+2y+1\right)=0\\ \)
\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2=0\Rightarrow\hept{\begin{cases}x+5=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}}\)
b. \(\left(2x+5\right)^2-\left(x-7\right)^2=0\Leftrightarrow\left(2x+5+x-7\right).\left(2x+5-x+7\right)=0\)
\(\Leftrightarrow\left(3x-2\right).\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-12\end{cases}}}\)
c. \(25.\left(x-3\right)^2=49.\left(1-2x\right)^2\Leftrightarrow\left(5x-15\right)^2=\left(7-14x\right)^2\Leftrightarrow\left(5x-15\right)^2-\left(7-14x\right)^2=0\)
\(\Leftrightarrow\left(5x-15-7+14x\right).\left(5x-15+7-14x\right)=0\Leftrightarrow\left(19x-22\right).\left(-9x-8\right)=0\)
\(\Leftrightarrow\left(19x-22\right).\left(9x+8\right)=0\Leftrightarrow\orbr{\begin{cases}19x-22=0\\9x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{22}{19}\\x=-\frac{8}{9}\end{cases}}}\)
d. \(\left(x+2\right)^2=\left(3x-5\right)^2\Leftrightarrow\left(x+2\right)^2-\left(3x-5\right)^2=0\Leftrightarrow\left(x+2+3x-5\right).\left(x+3-3x+5\right)=0\)
\(\Leftrightarrow\left(4x-3\right).\left(8-2x\right)=0\Leftrightarrow\orbr{\begin{cases}4x-3=0\\8-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=4\end{cases}}}\)
e. \(x^2-2x+1=16\Leftrightarrow\left(x-1\right)^2-16=0\Leftrightarrow\left(x-1-4\right).\left(x-1+4\right)=0\)
\(\Leftrightarrow\left(x-5\right).\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x-5=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)
a) x + 5x2 = 0
=> x.(1 + 5x) = 0
=> x = 0 hoặc 1 + 5x = 0
=> x = 0 hoặc 5x = -1
=> x = 0 hoặc x = -1/5
b) x + 1 = (x + 1)2
=> (x + 1)2 - (x + 1) = 0
=> (x + 1).(x + 1 - 1) = 0
=> (x + 1).x = 0
=> x + 1 = 0 hoặc x = 0
=> x = -1 hoặc x = 0
c) x3 + x = 0
=> x.(x2 + 1) = 0
=> x = 0 hoặc x2 + 1 = 0
=> x = 0 hoặc x2 = -1, vô lí
Vậy x = 0
a> x + 5x2 = 0
\(5x^2+x=0\)
\(x\left(5x+1\right)=0\)
\(5x=-1\)
=> \(=\hept{\begin{cases}x=\frac{-1}{5}\\0\end{cases}}\)
b> x + 1 = ( x + 1 )2
\(x+1=x^2+2x+1\)
\(-x\left(x+1\right)=0\)
\(x=-1\)
\(\Rightarrow x=\hept{\begin{cases}-1\\0\end{cases}}\)
c> x3 + x = 0
=> x = 0
https://olm.vn/hoi-dap/detail/258469425824.html . Bạn tham khảo link này
Áp dụng BĐT Cauchy cho 2 số không âm ta có :
\(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt[2]{\frac{a}{16}.\frac{1}{a}}+\frac{60}{16}=\frac{17}{4}\)
Đẳng thức xảy ra khi và chỉ khi \(a=4\)
Vậy \(Min_A=\frac{17}{4}\)khi \(a=4\)
\(\frac{x+2}{x-2}\ge0\)(1)
ĐKXĐ : \(x-2\ne0\Leftrightarrow x\ne2\)
Ta có:
\(\left(1\right)\Leftrightarrow\hept{\begin{cases}x+2\ge0\\x-2>0\end{cases}}\)hoặc \(\hept{\begin{cases}x+2\le0\\x-2< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\ge2\end{cases}}\)hoặc \(\hept{\begin{cases}x\le-2\\x< 2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge2\left(TMDK\right)\\x< -2\left(TMDK\right)\end{cases}}\)
Vậy \(x\ge2\)hoặc \(x< -2\)
'' TMDK '' có nghĩa là thỏa mãn điều kiện
Ta có x2 > 0 với mọi x
=> x2+16>0 với mọi x
Vậy pt đúng với mọi x