K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2019

 X0X04+40X0X+X040X=20202×11
<= >10000 *X + 100 * X + 4 + 40000 + 100 * X + X + 10000 * X + 400 + X =20202×11
<=> 20202 * X + 40404 = 20202×11
<=> 20202 * X + 20202 * 2 = 20202×11
<=> 20202 * ( X + 2) = 20202×11
X + 2 = 11
X = 11 -2 = 9

                               Mình làm đại! Ai thấy đúng thì cho mình nhé! Thank you :)

             

                       

16 tháng 3 2017

x0x04+40x0x+x040x=yyyyyy

Thay số:40404+40404+40404=121212

vậy yyyyyy=121212

14 tháng 7 2017

\(G=\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)

\(G=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)

\(G=1-\frac{1}{16}\)

\(G=\frac{15}{16}\)

14 tháng 7 2017

\(G=\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)

\(G=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)

\(G=1-\frac{1}{16}\)

\(G=\frac{15}{16}\)

31 tháng 3 2017

a) \(C=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)

       \(=7\left(\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\right)\)

       \(=7\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\right)\)

       \(=7\left(\frac{1}{2}-\frac{1}{28}\right)\)

       \(=7.\frac{13}{28}=\frac{7.13}{28}=\frac{13}{4}\)

b) \(B=\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+...+\frac{6}{97.99}\)

      \(=3\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\right)\)

      \(=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)

       \(=3\left(\frac{1}{3}-\frac{1}{99}\right)\)

       \(=3.\frac{32}{99}=\frac{3.32}{99}=\frac{32}{33}\)

1 tháng 4 2017

mình cũng làm như trên

24 tháng 7 2018

      \(\frac{1}{5.8}\)\(+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{98}{1545}\)

\(\Leftrightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=3.\frac{98}{1545}\)

\(\Leftrightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{98}{515}\)

\(\Leftrightarrow\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{98}{515}\)

\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{98}{515}\)

\(\Leftrightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{98}{515}\)

\(\Leftrightarrow\frac{1}{x+3}=\frac{1}{103}\)

\(\Leftrightarrow x+3=103\)

\(\Leftrightarrow x\)\(=103-3\)

\(\Leftrightarrow x\)\(=100\)

Vậy x = 100

~~~~~~~Hok tốt~~~~~~~~

24 tháng 7 2018

ta có \(\frac{1}{5.8}+\frac{1}{8.11}+...\frac{1}{x.\left(x+3\right)}\)\(=\frac{1}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x.\left(x+3\right)}\right)\)\(=\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)\)

\(\Rightarrow\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{98}{1545}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{98}{1545}:\frac{1}{3}=\frac{98}{515}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{98}{515}=\frac{1}{103}\)

\(\Rightarrow x+3=103\)

\(\Rightarrow x=100\)

nhớ k nha

                                   

a: Sửa đề; \(A=\dfrac{7.2:2\cdot28.6+1.43\cdot2\cdot64}{1+3+5+7+...+49-339}\) 

\(=\dfrac{3.6\cdot28.6+2.86\cdot64}{1+3+5+...+49-339}\)

\(=\dfrac{2.86\left(64+36\right)}{25^2-339}=\dfrac{286}{286}=1\)

b: =>2(x+7/8)=6*13/4=78/4=39/2

=>x+7/8=39/4

=>x=71/8

18 tháng 8 2020

\(\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.5}+.........+\frac{n}{\left(T_{n-1}+1\right)\left(T_{n-1}+1+n\right)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+......+\frac{1}{T_{n-1}+1}-\frac{1}{T_{n-1}+1+n}\)

\(1-\frac{1}{T_{n-1}+1+n}=\frac{T_{n-1}+1+n-1}{T_{n-1}+1+n}=\frac{T_{n-1}+n}{T_{n-1}+1+n}\)

Chú ý : Ai không thách thức cấp độ 1 ( vùng không tô đậm ) hoặc cấp độ 2 ( vùng tô đậm ) thì không được nhận k.

AI thách thức cấp độ 1 thì chỉ khi giải chính xác mới được nhận k.

Còn ai thách thức cấp độ 2 thì chỉ khi giải chính xác mới được nhận k và được công nhận là GOD luôn !

9 tháng 8 2017

\(\frac{65}{12}\)nha bạn

9 tháng 8 2017

\(10101\times\left(\frac{5}{10101}-\frac{5}{20202}+\frac{5}{30303}+\frac{5}{40404}\right)\)

\(=10101\times\left(\frac{10}{20202}-\frac{5}{20202}+\frac{20}{121212}+\frac{15}{121212}\right)\)

\(=10101\times\left(\frac{5}{20202}+\frac{25}{121212}\right)\)

\(=10101\times\frac{55}{121212}\)

\(=\frac{65}{12}\)