Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x+3\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(x\in\left\{-2;-4;0;-6;6;-12\right\}\)
\(\dfrac{x-6}{x+3}=\dfrac{x+3-6}{x+3}=\dfrac{x+3}{x+3}-\dfrac{6}{x+3}=1-\dfrac{6}{x+3}\)
\(\dfrac{x-6}{x+3}⋮x+3\Rightarrow\dfrac{6}{x+3}⋮x+3\\ \Rightarrow x+3\inƯ_{\left(6\right)}=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow x\in\left\{-9;-6;-5;-4;-2;-1;0;3\right\}\)
xy + 2x - 3y = 9
\(\Leftrightarrow\) 2x + xy - 3y - 6 = 3
\(\Leftrightarrow\) x(2 + y) - 3(y + 2) = 3
\(\Leftrightarrow\) (2 + y)(x - 3) = 3
Vì x, y \(\in\) Z nên (2 + y)(x - 3) \(\in\) Z. Ta có bảng sau:
x - 3 | 3 | 1 | -1 | -3 |
2 + y | 1 | 3 | -3 | -1 |
x | 6(TM) | 4(TM) | 2(TM) | 0(TM) |
y | -1(TM) | 1(TM) | -5(TM) | -3(TM) |
Vậy phương trình có nghiệm (x; y) = {(6; 1); (4; 1); (2; -5); (0; -3)}
Chúc bn học tốt!
Ta có: \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+2013\right)=4+1007\cdot2013\)
\(\Leftrightarrow2014x+2027091=2027095\)
\(\Leftrightarrow2014x=4\)
hay \(x=\dfrac{2}{1007}\)
Ta có: \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+2003\right)=4+1007\cdot2003\)
\(\Leftrightarrow2004x+\dfrac{2003\cdot2004}{2}=4+1007\cdot2003\)
\(\Leftrightarrow2004x=10019\)
hay \(x=\dfrac{10019}{2004}\)
Ta có:
42 = 2.3.7
14 = 2.7
⇒ ƯCLN(42; 14) = 2.7 = 14
⇒ x ∈ ƯC(42; 14) = Ư(14) = {1; 2; 7; 14}
Bg
Ta có: x2 + y2 = 34 (x; y \(\inℤ\))
Vì 62 hay (-6)2 = 36 > 34
Nên x và y nằm trong khoảng +1; +2; +3; +4; +5; 0
Với x = +5:
x2 + y2 = 34
25 + y2 = 34
y2 = 34 - 25
y2 = 9
y2 = 32 hay (-3)2
y = 3
Và ngược lại với x = +3 thì y = +5
Với x = +4
Thì y không thỏa mãn điều kiện (tự tính)
Với x = +2
Thì y không thỏa mãn
Với x = +1
Thì y cũng không thỏa mãn
Với x = 0
Cũng không thỏa mãn
Vậy x = +3 với y = +5 hoặc x = +5 với y = +3
Ta có: \(\dfrac{x+1}{2018}+\dfrac{x+1}{2019}+\dfrac{x+1}{2020}+\dfrac{x+1}{2021}=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
ƯC(17, 31)={1}
=> x=1.
Ư (17)= 1;17
Ư(31) = 1 ;31
ƯC ( 17; 31) là: 1
=> x = 1