K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7

\(x+\frac54=x-\frac35\)
(Trừ cả 2 vế cho x)
\(\frac54=-\frac35\) (vô lý)

Ta có: \(x+\frac54=x-\frac35\)

=>\(x-x=-\frac35-\frac54\)

=>\(0x=-\frac{12}{20}-\frac{25}{20}=-\frac{37}{20}\) (vô lý)

=>x∈∅

S
29 tháng 8

58. \(\left|x-\frac15\right|+\frac13=\frac14-\left|-\frac32\right|\)

\(\left|x-\frac15\right|+\frac13=\frac14-\frac32\)

\(\left|x-\frac15\right|=\frac14-\frac32-\frac13\)

\(\left|x-\frac15\right|=-\frac{19}{12}\)

⇒ vô nghiệm

59. \(\left|x-\frac52\right|=\frac43-\left(\frac23-\frac12\right)\)

\(\left|x-\frac52\right|=\frac76\)

\(\left[\begin{array}{l}x-\frac52=\frac76\Rightarrow x=\frac{11}{3}\\ x-\frac52=-\frac76\Rightarrow x=\frac43\end{array}\right.\)

vậy \(x\in\left\lbrace\frac43;\frac{11}{3}\right\rbrace\)

28 tháng 8

Để tìm x, ta giải từng phương trình:

Đối với phương trình 58:

|x - 1/5| + 1/3 = 1/4 - |-3/2|, ta biến đổi thành |x - 1/5| = 1/4 - 3/2 - 1/3 = -11/12.

Vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0, phương trình này không có nghiệm x.

Đối với phương trình 59:

|x - 5/2| = 4/3 - (2/3 - 1/2), ta biến đổi thành |x - 5/2| = 4/3 - (4/6 - 3/6) = 4/3 - 1/6 = 8/6 - 1/6 = 7/6. Suy ra x - 5/2 = 7/6 hoặc x - 5/2 = -7/6, cho ta các nghiệm x = 23/6 và x = 8/6 = 4/3.

Giải chi tiết:

Phương trình 58: |x - 1/5| + 1/3 = 1/4 - |-3/2| Tính giá trị tuyệt đối: |-3/2| = 3/2. Thay vào phương trình: |x - 1/5| + 1/3 = 1/4 - 3/2.

Chuyển 1/3 sang vế phải: |x - 1/5| = 1/4 - 3/2 - 1/3.

Quy đồng mẫu số để trừ: 1/4 - 6/4 - 4/12 = 3/12 - 18/12 - 4/12 = -19/12. Tuy nhiên, kiểm tra lại phép tính: 1/4 - 3/2 - 1/3 = 3/12 - 18/12 - 4/12 = (3 - 18 - 4)/12 = -19/12.

Nếu kết quả là -19/12 thì |x - 1/5| = -19/12. Vì giá trị tuyệt đối của một số luôn không âm, phương trình này không có nghiệm x.

Phương trình 59: |x - 5/2| = 4/3 - (2/3 - 1/2)

Tính biểu thức trong ngoặc: 2/3 - 1/2 = 4/6 - 3/6 = 1/6.

Thay vào phương trình: |x - 5/2| = 4/3 - 1/6.

Quy đồng mẫu số để trừ: |x - 5/2| = 8/6 - 1/6 = 7/6.

Trường hợp 1: x - 5/2 = 7/6.

x = 7/6 + 5/2.

x = 7/6 + 15/6.

x = 22/6 = 11/3.

Trường hợp 2: x - 5/2 = -7/6.

x = -7/6 + 5/2.

x = -7/6 + 15/6.

x = 8/6 = 4/3.

Kết luận:

Phương trình 58 không có nghiệm.

Phương trình 59 có hai nghiệm là x = 11/3 và x = 4/3.

30 tháng 1 2020

b) \(\left|5x-3\right|-x=7\)

\(\Rightarrow\left|5x-3\right|=7+x\)

\(\Rightarrow\orbr{\begin{cases}5x-3=7+x\\5x-3=-\left(7+x\right)\end{cases}\Rightarrow\orbr{\begin{cases}5x-3=7+x\\5x-3=-7-x\end{cases}\Rightarrow}\orbr{\begin{cases}5x-x=7+3\\5x+x=-7+3\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}4x=10\\6x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{2}{3}\end{cases}}}\)

Vậy .................... 

30 tháng 1 2020

Bạn ơi !!! ý A tham khảo tại link này nè :

https://h.vn/hoi-dap/question/394208.html

~ Học tốt ~

23 tháng 7 2019

1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)

2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)

3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)

4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)

23 tháng 7 2019

\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)

Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)

2 tháng 2 2019

Nhác quá mấy bài này hỏi làm j

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này

7 giờ trước (7:28)

a: \(\left|x+\frac{19}{55}\right|\ge0\forall x\)

\(\left|y+\frac{1890}{1975}\right|\ge0\forall y\)

\(\left|z-2004\right|\ge0\forall z\)

Do đó: \(\left|x+\frac{19}{55}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x,y,z\)

Dấu '=' xảy ra khi \(\begin{cases}x+\frac{19}{55}=0\\ y+\frac{1890}{1975}=0\\ z-2004=0\end{cases}\Rightarrow\begin{cases}x=-\frac{19}{55}\\ y=-\frac{1890}{1975}=-\frac{378}{395}\\ z=2004\end{cases}\)

b: Sửa đề: \(\left|x+\frac92\right|+\left|y+\frac43\right|+\left|z+\frac72\right|\le0\)

Ta có: \(\left|x+\frac92\right|\ge0\forall x\)

\(\left|y+\frac43\right|>=0\forall y\)

\(\left|z+\frac72\right|\ge0\forall z\)

Do đó: \(\left|x+\frac92\right|+\left|y+\frac43\right|+\left|z+\frac72\right|\ge0\forall x,y,z\)

\(\left|x+\frac92\right|+\left|y+\frac43\right|+\left|z+\frac72\right|\le0\)

nên \(\begin{cases}x+\frac92=0\\ y+\frac43=0\\ z+\frac72=0\end{cases}\Rightarrow\begin{cases}x=-\frac92\\ y=-\frac43\\ z=-\frac72\end{cases}\)

c: \(\left|x+\frac34\right|\ge0\forall x\)

\(\left|y-\frac15\right|\ge0\forall y\)

\(\left|x+y+z\right|\ge0\forall x,y,z\)

Do đó: \(\left|x+\frac34\right|+\left|y-\frac15\right|+\left|x+y+z\right|\ge0\forall x,y,z\)

Dấu '=' xảy ra khi \(\begin{cases}x+\frac34=0\\ y-\frac15=0\\ x+y+z=0\end{cases}\Rightarrow\begin{cases}x=-\frac34\\ y=\frac15\\ z=-x-y=\frac34-\frac15=\frac{11}{20}\end{cases}\)

d: \(\left|x+\frac34\right|\ge0\forall x\)

\(\left|y-\frac25\right|\ge0\forall y\)

\(\left|z+\frac12\right|\ge0\forall z\)

Do đó: \(\left|x+\frac34\right|+\left|y-\frac25\right|+\left|z+\frac12\right|\ge0\forall x,y,z\)

Dấu '=' xảy ra khi \(\begin{cases}x+\frac34=0\\ y-\frac25=0\\ z+\frac12=0\end{cases}\Rightarrow\begin{cases}x=-\frac34\\ y=\frac25\\ z=-\frac12\end{cases}\)

9 tháng 9 2018

a) \(|x+4|=\frac{7}{3}\) \(\Rightarrow x+4=\pm\left(\frac{7}{3}\right)\)

TH1: \(x+4=\frac{7}{3}\)                                   

\(x=\frac{7}{3}-4=-\frac{5}{3}\)

TH2: \(x+4=-\frac{7}{3}\)

\(x=-\frac{7}{3}-4=-\frac{19}{3}\)