Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)
2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)
3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)
a) \(\frac{x-3}{x+5}=\frac{5}{7}\)
\(\Rightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Rightarrow7x-21=5x+25\)
\(\Rightarrow7x-5x=21+25\)
\(\Rightarrow2x=46\)
\(\Rightarrow x=23\)
Vậy \(x=23\)
b) \(\frac{7}{x-1}=\frac{x+1}{9}\)
\(\Rightarrow\left(x-1\right).\left(x+1\right)=7.9\)
\(\Rightarrow\left(x-1\right)x-\left(x+1\right)=7.9\)
\(\Rightarrow x^2-x-x-1=63\)
\(\Rightarrow x^2-1=63\)
\(\Rightarrow x^2=64\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
Vậy \(x=8\) hoặc \(x=-8\)
c) \(\frac{x+4}{20}=\frac{5}{x+4}\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow x+4=\pm10\)
+) \(x+4=10\Rightarrow x=6\)
+) \(x+4=-10\Rightarrow x=-16\)
Vậy \(x\in\left\{6;-16\right\}\)
Ta có :
\(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+8}{2010}+\frac{x+7}{2011}\)
\(\Leftrightarrow\)\(\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+8}{2010}+1\right)+\left(\frac{x+7}{2011}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+4+2014}{2014}+\frac{x+3+2015}{2015}=\frac{x+8+2010}{2010}+\frac{x+7+2011}{2011}\)
\(\Leftrightarrow\)\(\frac{x+2018}{2014}+\frac{x+2018}{2015}=\frac{x+2018}{2010}+\frac{x+2018}{2011}\)
\(\Leftrightarrow\)\(\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2010}-\frac{x+2018}{2011}=0\)
\(\Leftrightarrow\)\(\left(x-2018\right)\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)
Vì \(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2010}-\frac{1}{2011}\ne0\)
Nên \(x-2018=0\)
\(\Leftrightarrow\)\(x=2018\)
Vậy \(x=2018\)
Chúc bạn học tốt ~
Ta có: \(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+7}{2011}+\frac{x+8}{2010}\)
\(\Rightarrow\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+7}{2011}+1\right)+\left(\frac{x+8}{2010}+1\right)\)
\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2013}=\frac{x+2018}{2011}+\frac{x+2018}{2010}\)
\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2013}-\frac{x+2018}{2011}-\frac{x+2018}{2010}=0\)
\(\Rightarrow\left(x+2018\right)\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
\(\Rightarrow x+2018=0\Rightarrow x=-2018\)
Chúc bn hc tốt! ^_^
a, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{5x}{15}=\frac{2y}{8}=\frac{5x-2y}{15-8}=\frac{28}{7}=4\)
=> x = 4.3 = 12
y = 4.4 = 16
b, \(x:2=y:\left(-5\right)\Rightarrow\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
=> x = (-1).2 = -2
y = (-1)(-5) = 5
c, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-10}=\frac{10}{10}=1\)
=> x = 8
y =12
z = 15
a) \(|x+4|=\frac{7}{3}\) \(\Rightarrow x+4=\pm\left(\frac{7}{3}\right)\)
TH1: \(x+4=\frac{7}{3}\)
\(x=\frac{7}{3}-4=-\frac{5}{3}\)
TH2: \(x+4=-\frac{7}{3}\)
\(x=-\frac{7}{3}-4=-\frac{19}{3}\)
1) \(\frac{x+4}{7+y}=\frac{4}{7}\)\(\Rightarrow7\left(x+4\right)=4\left(7+y\right)\)
\(\Rightarrow7x+28=28+4y\)
\(\Rightarrow7x=4y\)
\(\Rightarrow\frac{x}{4}=\frac{y}{7}\)
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{22}{11}=2\)
x/4 = 2 => x = 4 x 2 = 8
y/7 = 2 => y = 2 x 7 = 14
\(\frac{x+1}{x-2}=\frac{3}{4}\) ( \(ĐKXĐ\) : \(x\ne2\) )
\(\Leftrightarrow\left(x+1\right).4=\left(x-2\right).3\)
\(\Leftrightarrow4x+4=3x-6\)
\(\Leftrightarrow4x-3x=-6-4\)
\(\Leftrightarrow x=-10\)
b ) \(\frac{2x-3}{x+1}=\frac{4}{7}\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow7\left(2x-3\right)=4\left(x+1\right)\)
\(\Leftrightarrow14x-21=4x+4\)
\(\Leftrightarrow10x=25\)
\(\Leftrightarrow x=\frac{5}{2}\)
\(|x-3|+|7-x|=4\left(1\right)\)
Ta có: \(x-3=0\Leftrightarrow x=3\)
\(7-x=0\Leftrightarrow x=7\)
Lập bảng xét dấu :
x-3 7-x 3 7 0 0 - - + + + +
+) Với\(x< 3\Rightarrow\hept{\begin{cases}x-3< 0\\7-x>0\end{cases}\Rightarrow}\hept{\begin{cases}|x-3|=3-x\\|7-x|=7-x\end{cases}\left(2\right)}\)
Thay (2) vào (1) ta được :
\(3-x+7-x=4\)
\(10-2x=4\)
\(x=3\)( loại)
+) Với \(3\le x\le7\Rightarrow\hept{\begin{cases}x-3\ge0\\7-x\ge0\end{cases}\Rightarrow}\hept{\begin{cases}|x-3|=x-3\\|7-x|=7-x\end{cases}\left(3\right)}\)
Thay (3) vào (1) ta được :
\(x-3+7-x=4\)
\(4=4\)( luôn đúng chọn )
+) Với \(x>7\Rightarrow\hept{\begin{cases}x-3>0\\7-x< 0\end{cases}\Rightarrow}\hept{\begin{cases}|x-3|=x-3\\|7-x|=x-7\end{cases}\left(4\right)}\)
Thay (4) vào (1) ta được :
\(x-3+x-7=4\)
\(2x-10=4\)
\(x=7\)( loại )
Vậy \(3\le x\le7\)
Nếu x < 3
=> |x - 3| = -(x - 3) = - x + 3
|7 - x| = 7 - x
Khi đó |x - 3| + |7 - x| = 4 (1)
<=> - x + 3 - 7 - x = 4
<=> - 2x - 4 = 4
<=> -2x = 8
<=> x = - 4 (TM)
Nếu 3 \(\le\)x \(\le\) 7
=> |x - 3| = x - 3
|7 - x| = 7 - x
Khi đó (1) <=> x - 3 + 7 - x = 4
=> 0x + 4 = 4
=> 0x = 0
=> x thỏa mãn với mọi x (3 < x < 7)
Nếu x > 7
=> |x - 3| = x - 3
=> |7 - x| = - (7 - x) = - 7 + x
Khi đó (1) <=> x - 3 - 7 + x = 4
=> 2x - 10 = 4
=> 2x = 14
=> x = 7 (loại)
Vậy x = - 4 hoặc 3 < x < 7