K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2023

\(\left(x-3\right)=\left(3-x\right)^2\)

\(\Leftrightarrow x-3=\left(x-3\right)^2\)

\(\Leftrightarrow\left(x-3\right)-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)\left[1-\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(4-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4-x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

___________

\(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)

\(\Leftrightarrow x^3+3\cdot\dfrac{1}{2}\cdot x^2+3\cdot\left(\dfrac{1}{2}\right)^2\cdot x+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)

\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)

\(\Leftrightarrow x=\dfrac{1}{4}-\dfrac{1}{2}\)

\(\Leftrightarrow x=-\dfrac{1}{4}\)

loading...  loading...  

1 tháng 9 2020

\(\text{a)}\Rightarrow x-1-x-1-x+2=5\)

\(\Rightarrow-x=5\)

\(\Rightarrow x=-5\)

     \(\text{Vậy x=-5}\)

\(\text{b)}\left(2x-1\right)^2-\left(2x+3\right)^2=7\)

\(\Rightarrow\left(4x^2-4x+1\right)-\left(4x^2+12x+9\right)=7\)

\(\Rightarrow4x^2-4x+1-4x^2-12x-9=7\)

\(\Rightarrow-16x-8=7\)

\(\Rightarrow-16x=15\)

\(\Rightarrow x=\frac{-15}{16}\)

      \(\text{Vậy }x=\frac{-15}{16}\)

\(\text{c)}\Rightarrow16x^2-9-\left(16x^2-8x+1\right)=8\)

\(\Rightarrow-9+8x-1=8\)

\(\Rightarrow8x=18\)

\(\Rightarrow x=\frac{18}{8}=\frac{9}{4}\)

      \(\text{Vậy }x=\frac{9}{4}\)

\(\text{Phần d số rất lẻ, có thể bạn chép sai đề nên mình ko chữa nha~}\)

14 tháng 10 2021

1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)

\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)

\(\Leftrightarrow x=2\)

3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)

\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)

\(\Leftrightarrow6x=6\)

hay x=1

2 tháng 9 2021

a) \(3\left(x-2\right)+2\left(x-3\right)=5\)

\(\Rightarrow3x-6+2x-6=5\)

\(\Rightarrow5x=17\Rightarrow x=\dfrac{17}{5}\)

b) \(\left(2x-8\right)^2-16=0\)

\(\Rightarrow\left(2x-8-4\right)\left(2x-8+4\right)=0\)

\(\Rightarrow\left(2x-12\right)\left(2x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=12\\2x=4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)

c) \(\left(2x-1\right)^2-\left(4x+1\right)\left(x-3\right)=3\)

\(\Rightarrow4x^2-4x+1-4x^2+12x-x+3=3\)

\(\Rightarrow7x=-1\Rightarrow x=-\dfrac{1}{7}\)

a: Ta có: \(3\left(x-2\right)+2\left(x-3\right)=5\)

\(\Leftrightarrow3x-6+2x-6=5\)

\(\Leftrightarrow5x=17\)

hay \(x=\dfrac{17}{5}\)

b: Ta có: \(\left(2x-8\right)^2-16=0\)

\(\Leftrightarrow\left(2x-4\right)\left(2x-12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

10 tháng 9 2021

a)3(x-2)+2(x-3)=5

=>3x-6+2x-6=5

=>5x=17

=>x=17/5

10 tháng 9 2021

b)(2x-8)^2=16

TH1:2x-8=4=>x=6

TH2:2x-8=-4=>x=2

8 tháng 9 2021

\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)

\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)

Bài 4:

a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)

\(\Leftrightarrow6x-9-2x+4=-3\)

\(\Leftrightarrow4x=2\)

hay \(x=\dfrac{1}{2}\)

b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)

\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)

\(\Leftrightarrow3x=13\)

hay \(x=\dfrac{13}{3}\)

c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)

\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)

\(\Leftrightarrow-8x=-8\)

hay x=1

25 tháng 8 2019

a) \(\left(x-3\right)^2-4=0\)

\(\left(x-3\right)^2=0+4\)

\(\left(x-3\right)^2=4\)

\(\left(x-3\right)^2=\pm4\)

\(\left(x-3\right)^2=\pm2^2\)

\(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)

\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)

\(4x^2+12x+9-4x^2+1=22\)

\(12x+10=22\)

\(12x=22-10\)

\(12x=12\)

\(x=1\)

c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)

\(16x^2-9-16x^2+40x-25=16\)

\(-34+40x=16\)

\(40x=16+34\)

\(40x=50\)

\(x=\frac{50}{40}=\frac{5}{4}\)

d) \(x^3-9x^2+27x-27=-8\)

\(x^3-9x^2+27x-27+8=0\)

\(x^3-9x^2+27x-19=0\)

\(\left(x^2-8x+19\right)\left(x-1\right)=0\)

Vì \(\left(x^2-8x+19\right)>0\) nên:

\(x-1=0\)

\(x=1\)

e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)

\(x^3+2x^2+x+x^2+2x+1-x^2-3x^2=2\)

\(3x+1=2\)

\(3x=2-1\)

\(3x=1\)

\(x=\frac{1}{3}\)

14 tháng 9 2021

1) \(\dfrac{3x}{4x-8}\)

\(ĐKXĐ:4x-8\ne0\Leftrightarrow x\ne2\)

2) \(\dfrac{2x}{x^2-9}\)

\(ĐKXĐ:x^2-9\ne0\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)

3) \(\dfrac{6}{x^3+1}=\dfrac{6}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(ĐKXĐ:\)\(x+1\ne0\Leftrightarrow x\ne-1\)

(do \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\))

4) \(\dfrac{6x^2}{x^2-2x+1}=\dfrac{6x^2}{\left(x-1\right)^2}\)

\(ĐKXĐ:x-1\ne0\Leftrightarrow x\ne1\)

5) \(\dfrac{x-2}{x^2+3}\)

Do \(x^2+3>0\forall x\in R\)

Vậy biểu thức trên xác định với mọi x

6) \(\dfrac{2x}{x^2+3x+2}=\dfrac{2x}{\left(x+1\right)\left(x+2\right)}\)

\(ĐKXĐ:\)\(\left\{{}\begin{matrix}x+1\ne0\\x+2\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne-2\end{matrix}\right.\)