Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Vì \(\sqrt{3x+2y+z}\ge0\forall x;y;z\)
\(\left|y-\frac{1}{2}\right|\ge0\forall y\)
\(\left(z-2\right)^2\ge0\forall z\)
\(\Rightarrow A\ge2018\forall x;y;z\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2y+z=0\\y-\frac{1}{2}=0\\z-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x+2\cdot\frac{1}{2}+2=0\\y=\frac{1}{2}\\z=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{2}\\z=2\end{cases}}}\)
Vậy........
Bài 2 :
Lý luận tương tự câu 1) ta có :
\(\hept{\begin{cases}x-1=0\\y+1=0\\x+y+z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\\1-1+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\\z=0\end{cases}}}\)
Thay x; y; z vào P ta có :
\(P=1^{2018}+\left(-1\right)^{2019}+0^{2020}\)
\(P=1-1+0\)
\(P=0\)
\(\sqrt{x}=65\Rightarrow x=65^2=4225\Rightarrow x^2=4225^2=17850625\)
1. a) x^2=16=>x=+_4
b)x^2=36=>x=+_6
c)x^2=49=>x=+_7
d) x-1=+_5
+) x-1=5
=>x=6
+)x-1=-5
=>x=-4
e) (x+3)^2=-1( vô lý)
ko cs gtri của x
f) (2x+7)^2=36=>2x+7=+_6
+) 2x+7=6
x=-1/2
+) 2x+7=-6
=>x=-13/2
2,Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì x+y=90 nên:3k+6k=90
\(\Leftrightarrow\)k(3+6)=90
9k=90
k=90:9=10
Suy ra k=10\(\hept{\begin{cases}x=3.10=30\\y=6.10=60\end{cases}}\)
3,
Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì 4x-y=42 nên:4.3k-6k=42
\(\Leftrightarrow\) 12k-6k=42
6k=42
k=42:6=7
Suy ra k=7\(\hept{\begin{cases}x=3.7=21\\y=6.7=42\end{cases}}\)
4,
Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì xy=162 nên:3k.6k=162
\(\Leftrightarrow\)k2.18=162
k2=162:18
k2=9
k=\(\pm\)3
Với k=3\(\hept{\begin{cases}x=3.3=9\\y=6.3=18\end{cases}}\)
Với k=-3\(\hept{\begin{cases}x=3.\left(-3\right)=-9\\y=6.\left(-3\right)=-18\end{cases}}\)
5,
Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì 2x2-y2=-8 nên:2.(3k)2-(6k)2=-8
\(\Leftrightarrow\)2.9k2-36k2=-8
18k2-36k2=-8
-18k2=-8
k2=-8/-18=4/9
k=\(\pm\)\(\frac{2}{3}\)
Với k=\(\frac{2}{3}\)\(\hept{\begin{cases}x=\frac{2}{3}.3=2\\y=\frac{2}{3}.6=4\end{cases}}\)
Với k=\(\frac{-2}{3}\)\(\hept{\begin{cases}x=\frac{-2}{3}.3=-2\\y=\frac{-2}{3}.6=-4\end{cases}}\)
6,
Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì x-y=9 nên:3k-6k=9
\(\Leftrightarrow\) -3k=9
k=9:(-3)
k=-3
Suy ra\(\hept{\begin{cases}x=-3.3=-9\\y=-3.6=-18\end{cases}}\)
1) \(x-2\sqrt{x}=0\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
2) \(x=\sqrt{x}\Rightarrow x-\sqrt{x}=0\Rightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
3) \(2x+5\sqrt{x}=0\Rightarrow\sqrt{x}\left(2\sqrt{x}+5\right)=0\Rightarrow\sqrt{x}=0\)(Vì \(\sqrt{x}\ge0\Rightarrow2\sqrt{x}+5>0\))\(\Rightarrow x=0\)