K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2019

(x-1)(x-3) >0 
<=> x^2-4x+3>0 
<=>x^2-2x2+4-1>0 
<=>(x-2)^2>1 
<=>x-2>1 
<=>x>3 

23 tháng 1 2019

(x-1)(x-3)>0 khi: 
TH1: x-1>0 và x-3>0 <=>x>1 và x>3 =>x>3 (vì x>3 thì chắc chắn sẽ lớn hơn 1) 
TH2: x-1<0 và x-3<0 <=>x<1 và x<3 =>x<1 (vì x<1 thì chắc chắn sẽ bé hơn 3) 
Vậy x>3 hoặc x<1 thì (x-1)(x-3)>0 

28 tháng 9 2018

a)\(\left(x+1\right)\left(x-5\right)< 0\) khi \(\left(x+1\right)\) và \(\left(x-5\right)\) trái dấu.

Chú ý rằng: \(x+1>x-5\) nên \(x+1>0,x-5< 0\). Giải cả hai trường hợp ta có:

\(\hept{\begin{cases}x+1>0\\x-5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 5\end{cases}}\Leftrightarrow-1< x< 5}\)

b) \(\left(x-2\right)\left(x+\frac{5}{7}\right)>0\) khi \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) đồng dấu (\(x-2\ne0,\left(x+\frac{5}{7}\right)\ne0\Leftrightarrow x\ne2;x\ne-\frac{5}{7}\)

+ Với \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) dương thì ta có:\(x-2< x+\frac{5}{7}\). Có 2 TH

 \(\hept{\begin{cases}x-2>0\\x+\frac{5}{7}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x>-\frac{5}{7}\end{cases}}}\) . Dễ thấy để thỏa mãn cả hai trường hợp thì x > 2  (1)

+ Với \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) âm thì ta có: \(x-2< x+\frac{5}{7}\). Có 2 TH

\(\hept{\begin{cases}\left(x-2\right)< 0\\\left(x+\frac{5}{7}\right)< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x< -\frac{5}{7}\end{cases}}}\). Dễ thấy để x thỏa mãn cả hai trường hợp thì \(x< -\frac{5}{7}\) (2)

Từ (1) và (2) ta có: \(\hept{\begin{cases}x>2\\x< -\frac{5}{7}\end{cases}}\) thì \(\left(x-2\right)\left(x+\frac{5}{7}\right)>0\)

10 tháng 7 2017

Ta có : \(\left|x+\frac{13}{14}\right|=-\left|x-\frac{3}{7}\right|\)

\(\Rightarrow\left|x+\frac{13}{14}\right|+\left|x-\frac{3}{7}\right|=0\)

Mà : \(\left|x+\frac{13}{14}\right|\ge0\forall x\)

      \(\left|x-\frac{3}{7}\right|\ge0\forall x\)

Nên : \(\orbr{\begin{cases}\left|x+\frac{13}{14}\right|=0\\\left|x-\frac{3}{7}\right|=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{13}{14}=0\\x-\frac{3}{7}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{14}\\x=\frac{3}{7}\end{cases}}\)

25 tháng 11 2015

a)(x-3)/(x+5)=5/7

(x-3)7=(x+5)5

7x-21=5x+25

7x-5x=25+21

2x=46

x=46/2

x=23

Vậy x=23

b)(x-1)(x+2)=(x-2)/(x+3)

(x-1)(x+3)=(x+2)(x-2)

x(x-1)+3(x-1)=x(x-2)+2(x-2)

x2-x+3x-3=x2-2x+2x-4

2x-3=-4

2x=-4+3

x=-1/2

Vậy x=

27 tháng 9 2020

a, \(|x-1|+|2x-y+3|=0\)

Ta có : \(|x-1|\ge0;|2x-y+3|\ge0< =>|x-1|+|2x-y+3|\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}< =>\hept{\begin{cases}x=1\\y=5\end{cases}}}\)

b, \(|x-y|+|x+y-2|=0\)

Ta có : \(|x-y|\ge0;|x+y-2|\ge0< =>|x-y|+|x+y-2|\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}< =>\hept{\begin{cases}x=1\\y=1\end{cases}< =>x=y=1}}\)

c, \(|x+y-1|+|2x-3y|=0\)

Ta có : \(|x+y-1|\ge0;|2x-3y|\ge0< =>|x+y-1|+|2x-3y|\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}< =>\hept{\begin{cases}x+y=1\\\frac{x}{3}=\frac{y}{2}\end{cases}}\)

Theo tính chất của dãy tỉ số bằng nhau ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{1}{5}< =>\hept{\begin{cases}\frac{x}{3}=\frac{1}{5}\\\frac{y}{2}=\frac{1}{5}\end{cases}}\)

\(< =>\hept{\begin{cases}5.x=1.3\\y.5=1.2\end{cases}< =>\hept{\begin{cases}5x=3\\5y=2\end{cases}< =>\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}}}\)

27 tháng 9 2020

a) Ta có :\(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|2x-y+3\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x-1\right|+\left|2x-y+3\right|\ge0\forall x;y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\2x-y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases}}\)

b) Ta có \(\hept{\begin{cases}\left|x-y\right|\ge0\forall x;y\\\left|x+y-2\right|\ge0\forall x;y\end{cases}\Rightarrow\left|x-y\right|+\left|x+y-2\right|\ge0\forall x;y}\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x+y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

c) Ta có \(\hept{\begin{cases}\left|x+y-1\right|\ge0\forall x;y\\\left|2x-3y\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x+y-1\right|+\left|2x-3y\right|\ge0\forall x;y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\2x=3y\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\x=\frac{3}{2}y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}\)

7 tháng 11 2019

1)a) -1/3 ; -0,3 ; -2/5 ; 0 ;1 ; 2

b) 0 ; -0,3 ; -1/3 ; -2/5 ; 1 ; 2