K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2016

x = 2 hoặc x = 1

14 tháng 5 2016

1=<x=<2

6 tháng 3 2018

Mik đoán đại thôi sai cũng đừng trách mik nha:

x = 2014

y = 2016

6 tháng 11 2016

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{yz\left(x+y+z\right)+xz\left(x+y+z\right)+xy\left(x+y+z\right)-xyz}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\)\(xyz+y^2z+yz^2+x^2z+xyz+xz^2+x^2y+xy^2+xyz-xyz=0\)

\(\Leftrightarrow\)\(\left(xyz+y^2z\right)+\left(xyz+x^2z\right)+\left(xz^2+yz^2\right)+\left(xy^2+x^2y\right)=0\)

\(\Leftrightarrow yz\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)+xy\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(yz+xz+xy+z^2\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y\\x+z=0\end{cases}}=0\)  hoặc y+z=0

Do đó ta có B=0

17 tháng 9 2017

buom gai chau au

2 tháng 8 2016

Vì \(\left(x-2015\right)^{2014}\ge0;\left(x-2016\right)^{2014}\ge0\)

=> \(\left(x-2015\right)^{2014}+\left(x-2016\right)^{2014}\ge0\)

Mà x - 2015 > x - 2016 => \(\left(x-2015\right)^{2014}>\left(x-2016\right)^{2014}\)

=> (x - 2015)2014 = 1;(x - 2016)2014 = 0

=> x - 2016 = 0

=> x = 2016

3 tháng 8 2016

Đặt \(x-2015=a;\text{ }2016-x=b\)

\(\Rightarrow a+b=1\text{ }\left(1\right)\)

Từ phương trình đã cho, ta được \(a^{2014}+b^{2014}=1\text{ }\left(2\right)\)

Nếu \(a< 0\)\(\left(1\right)\Rightarrow b=1-a>1\)\(\Rightarrow a^{2014}+b^{2014}>1\)(không thỏa (2))

Tương tự với b

Vậy \(a,b\ge0\)

\(\left(2\right)\Rightarrow a^{2014};\text{ }b^{2014}\le1\Rightarrow-1\le a,b\le1\)

\(\Rightarrow0\le a,b\le1\)

\(\left(1\right)+\left(2\right)\Rightarrow a+b=a^{2014}+b^{2014}\)

\(\Leftrightarrow a\left(1-a^{2013}\right)+b\left(1-b^{2013}\right)=0\text{ }\left(3\right)\)

Ta lại có: \(0\le a,b\le1\Rightarrow\hept{\begin{cases}1-a^{2013}\ge0\\1-b^{2013}\ge0\end{cases}}\)

\(\Rightarrow a\left(1-a^{2013}\right)+b\left(1-b^{2013}\right)\ge0\forall a,b\in\left[0;1\right]\)

Dấu bằng chỉ xảy ra khi \(a,b\in\left\{0;1\right\}\)

Do \(a+b=1\) nên \(\left(a;b\right)\in\left\{\left(0;1\right);\text{ }\left(1;0\right)\right\}\)

+TH1: \(\hept{\begin{cases}a=1\\b=0\end{cases}}\Rightarrow\hept{\begin{cases}x-2015=1\\2016-x=0\end{cases}}\Leftrightarrow x=2016\)

+TH2 \(\hept{\begin{cases}a=0\\b=1\end{cases}\Leftrightarrow\hept{\begin{cases}x-2015=0\\2016-x=1\end{cases}}\Leftrightarrow}x=2015\)

Vậy \(x\in\left\{2015;\text{ }2016\right\}\)

20 tháng 4 2016

dùng phương pháp đánh giá nha,,,,,,x=1 hoặc x=0

21 tháng 4 2016

k đc nhé đánh giá sao đc mk cx có cách giải nhưng dài nên hỏi m.n cách khác

5 tháng 3 2016

em mới lớp 6 thôi bà ơi. khó lemsssssssssss

13 tháng 10 2015

Mình có thể giúp bạn bài 2 như sau, thủ thuật vô cùng đơn giản :

Ta có : 20162-2015= (2016-2015).(2015+2016) = 2015+2016. Tương tự với các số khác, ta có :

A = 2016+2015+2014+2013+...+2+1 = 2016.2017:2=2033136

ok ?