\(\left|x-2\right|\le1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2023

loading...

CHÚC EM HỌC TỐT NHÁhiha

6 tháng 10 2023

Ui ! Sao chữ chị đẹp v 

hi hì 😅

30 tháng 11 2017

sky oi say oh yeah

4 tháng 9 2017

\(x+2>m\)

\(x\le1\)

\(\Rightarrow x+2\le3\)

\(\Rightarrow m\le3\)

15 tháng 2 2017

\(\frac{2x-5}{!x-3!}+1>0\Leftrightarrow\frac{2x-5+!x-3!}{!x-3}>0\)

do !x-3!>0 mọi x khác 3=> Bất phương trình tương đương

\(2x-5+!x-3!>0\Leftrightarrow!x-3!>5-2x\)

TH(1) x<3 <=>3-x>5-2x=> x>2

Kết luận(1) \(2< x< 3\)

TH(2) \(x\ge3\Leftrightarrow x-3>5-2x\Rightarrow3x>8\Rightarrow x>\frac{8}{3}\)

Kết luận(2) \(x\ge3\)

(1)và(2) nghiệm của Bpt là: x>2

10 tháng 10 2017

Ta có: \(4xy\le\left(x+y\right)^2\le1\)

\(\Leftrightarrow xy\le\dfrac{1}{4}\)

\(A=\left(1+\dfrac{1}{x^2}\right)\left(1+\dfrac{1}{y^2}\right)\)

\(=\left(1+\dfrac{1}{4x^2}+\dfrac{1}{4x^2}+\dfrac{1}{4x^2}+\dfrac{1}{4x^2}\right)\left(1+\dfrac{1}{4y^2}+\dfrac{1}{4y^2}+\dfrac{1}{4y^2}+\dfrac{1}{4y^2}\right)\)

\(\ge5\sqrt[5]{\dfrac{1}{4^4x^8}}.5\sqrt[5]{\dfrac{1}{4^4y^8}}\)

\(=25\sqrt[5]{\dfrac{1}{4^8}.\dfrac{1}{\left(xy\right)^8}}\ge25\sqrt[5]{\dfrac{1}{4^8}.\dfrac{1}{\left(\dfrac{1}{4}\right)^8}}=25\)

26 tháng 2 2019

a/ ĐKXĐ \(x\ge-\frac{3}{2}\)

Ta thấy cả 2 vế đều là số không âm nên ta bình phương 2 vế được

\(3x+5+2\sqrt{\left(2x+3\right)\left(x+2\right)}\le1\)

\(\Leftrightarrow2\sqrt{\left(2x+3\right)\left(x+2\right)}\le-3x-4\)( Điều kiện \(x\le-\frac{4}{3}\))

Tiếp tục bình phương rồi rút gọn ta được

\(x^2-4x-8\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x\le2-2\sqrt{3}\\x\ge2+2\sqrt{3}\end{cases}}\)

Kết hợp tất cả ta được

\(-\frac{3}{2}\le x\le2-2\sqrt{3}\)

26 tháng 2 2019

Câu b với d cũng chỉ cần bình phương là ra

c/ Điều kiện: \(3\le x\le8\)

Đặt \(\sqrt{\left(x-3\right)\left(8-x\right)}=a\ge0\)

Thì bài toán thành

\(a-a^2+2>0\)

\(\Leftrightarrow-1\le a\le2\)

Tới đây thì đơn giản rồi

10 tháng 10 2020

Ta có: \(x^2-2\left(3m-1\right)x+m+3\ge0\)

\(\Leftrightarrow f\left(m\right)=\left(-6x+1\right)m+x^2+2x+3\ge0\)

Ta thấy \(f\left(m\right)\) là hàm số bậc nhất mà \(x\in[1;+\infty)\Rightarrow-6x+1< 0\)

\(\Rightarrow\) Hàm \(f\left(m\right)\) nghịch biến

Từ giả thiết \(m\le1\Rightarrow f\left(m\right)\ge f\left(1\right)\)

\(\Leftrightarrow x^2-2\left(3m-1\right)x+m+3\ge\left(x-2\right)^2\ge0\left(đpcm\right)\)