\(\left(x-2014\right)^2+\left(x-2014\right)\left(x+2014\right)=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

\(\Rightarrow\left(x-2014\right)\left(x-2014+x+2014\right)=0\)

\(\Rightarrow\left(x-2014\right).2x=0\)

=> x - 2014 = 0 => x = 2014

hoặc 2x = 0 => x = 0

Vậy x = 0 ; x = 2014

6 tháng 2 2020

Hoặc bác muốn làm kiểu như này nhưng ko cần đặt cũng đc :V t đặt nhìn cho đỡ rối 

phải trừ 3ab(a+b) chứ nhỉ ???

12 tháng 12 2018

\(f\left(1\right)=\left(1^2+1-1\right)^{2014}+\left(1^2-1-1\right)^{2014}-2=1+1-2=0\)

Nên \(f\left(x\right)⋮\left(x-1\right)\)

\(f\left(-1\right)=\left[\left(-1\right)^2+\left(-1\right)-1\right]^{2014}.\left[\left(-1\right)^2-\left(-1\right)-1\right]^{2014}-2=1+1-2=0\)

Nên \(f\left(x\right)⋮\left(x+1\right)\)

Vậy \(f\left(x\right)⋮\left[\left(x-1\right)\left(x+1\right)\right]\Rightarrow f\left(x\right)⋮\left(x^2-1\right)\)

29 tháng 11 2016

Ta có:

\(M=\frac{x\left(yz-x^2\right)+y\left(zx-y^2\right)+z\left(xy-z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{xyz-x^3+xyz-y^3+xyz-z^3}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{3xyz-x^3-y^3-z^3}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(-M=\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

Xét đẳng thức phụ:

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=\left[\left(a +b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-ab\right]=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-abc-ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

Thay vào -M ta có:

\(-M=\frac{\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{1}{2}\left(x+y+z\right)\Rightarrow M=-\frac{1}{2}\left(x+y+z\right)\)

Giờ thay: \(x=2014^{2015}-20142015;y=20142015-2015^{2014};z=2015^{2014}-2014^{2015}\)

Ta có:

\(M=-\frac{1}{2}\left(2014^{2015}-20142015+20142015-2015^{2014}+2015^{2014}-2014^{2015}\right)=0\)

29 tháng 11 2016

Bạn làm ngược từ cuối á .... cũng sáng tạo ý

10 tháng 7 2020

Bài làm:

Sửa lại đề: \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z=-34\)

\(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

\(\Leftrightarrow\left(y+z-2x\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

Mà \(\hept{\begin{cases}\left(y+z-2x\right)^2\ge0\\\left(y-3\right)^2\ge0\\\left(z-5\right)^2\ge0\end{cases}\left(\forall x,y,z\right)}\)nên dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(y+z-2x\right)^2=0\\\left(y-3\right)^2=0\\\left(z-5\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)

Thay x,y,z vào Q ta tính được:

\(Q=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}=0+1+1=2\)

Vậy Q=2

Ta có :

\(\left(x^2-2014\right)\left(x^2-2015\right)\left(x^2-2016\right)\)\(=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x^2-2014=0\\x^2-2015=0\\x^2-2016=0\end{cases}}\)

Giải (1) :

    \(x^2-2014=0\)

     \(\hept{\begin{cases}x=\sqrt{2014}\\x=-\sqrt{2014}\end{cases}}\)

Giải (2) :

     \(x^2-2015=0\)

        \(\hept{\begin{cases}x=\sqrt{2015}\\x=-\sqrt{2015}\end{cases}}\)

Giải (3) :

   \(x^2-2016=0\)

    \(\hept{\begin{cases}x=\sqrt{2016}\\x=-\sqrt{2016}\end{cases}}\)

Vậy nghiệm nhỏ nhất của phương trình là \(x=-\sqrt{2016}\)

Chú ý : \(x^2-2014=0\)(1)

            \(x^2-2015=0\)(2)

            \(x^2-2016=0\)(3)