\(\left(\sqrt{x-1}+5\right)\left(x-6\sqrt{x}\right)=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2020

\(\left(\sqrt{x-1}+5\right)\left(x-6\sqrt{x}\right)=0\)

Điều kiện xác định: \(x\ge1\)

phương trình <=> \(\orbr{\begin{cases}\sqrt{x-1}+5=0\\x-6\sqrt{x}=0\end{cases}}\)

*\(\sqrt{x-1}+5=0\Leftrightarrow\sqrt{x-1}=-5\)=> vô nghiệm vì \(\sqrt{x-1}\ge0\)

*\(x-6\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-6\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\\sqrt{x}=6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(loai\right)\\x=36\left(tmdk\right)\end{cases}}\)

vậy nghiệm của phương trình là x = 36

20 tháng 10 2020

\(\left(\sqrt{x-1}+5\right)\left(x-6\sqrt{x}\right)=0\)

ĐK : \(x\ge1\)

Ta có : \(\sqrt{x-1}+5\ge5>0\forall x\ge0\)

=> Để \(\left(\sqrt{x-1}+5\right)\left(x-6\sqrt{x}\right)=0\)

thì \(x-6\sqrt{x}=0\)

=> \(\sqrt{x}\left(\sqrt{x}-6\right)=0\)

=> \(\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}=6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=36\left(tm\right)\end{cases}}\)

Vậy x = 36

10 tháng 8 2020

a) 

<=> \(x\left(0,2-1,2\right)+3,7=-6,3\)

<=> \(-x=-10\)

<=> \(x=10\)

b) 

<=> \(x\left(x-1\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

d) 

<=> \(2\sqrt{x+1}=8\)

<=> \(\sqrt{x+1}=4\)

<=> \(x=15\)

e) 

<=> \(\orbr{\begin{cases}1-x=\sqrt{2}-0,\left(1\right)\\1-x=0,\left(1\right)-\sqrt{2}\end{cases}}\)

<=> \(\orbr{\begin{cases}1+0,\left(1\right)-\sqrt{2}=x\\x=1+\sqrt{2}-0,\left(1\right)\end{cases}}\)

10 tháng 8 2020

a) 0,2x + ( -1, 2 )x + 3, 7 = -6, 3

<=> x( 0,2 - 1, 2 ) + 3, 7 = -6, 3

<=> -x = -10

<=> x = 10

b) x2 = x

<=> x2 - x = 0

<=> x( x - 1 ) = 0

<=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

c) 0,(12) : 1,(6) = x : 0,(4)

<=> 4/33 : 5/3 = x : 4/9

<=> 4/55 = x : 4/9

<=> x = 16/495

d) \(2\sqrt{x+1}-3=5\)

\(\Leftrightarrow2\sqrt{x+1}=8\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\)

e) \(\left|1-x\right|=\sqrt{2}-0,\left(1\right)\)

\(\Leftrightarrow\left|1-x\right|=\sqrt{2}-\frac{1}{9}\)

\(\Leftrightarrow\left|1-x\right|=\frac{-1+9\sqrt{2}}{9}\)

\(\Leftrightarrow\orbr{\begin{cases}1-x=\frac{-1+9\sqrt{2}}{9}\\1-x=\frac{1-9\sqrt{2}}{9}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{10-9\sqrt{2}}{9}\\x=\frac{8+9\sqrt{2}}{9}\end{cases}}\)

1 tháng 12 2019

#Tiểu_Tỷ_Tỷ⁀ᶜᵘᵗᵉ             

Đợi đến 9 giờ nha !

1 tháng 12 2019

                                                                              Bài giải

b, \(x-5+\left|x-3\right|=4\)

\(\left|x-3\right|=4-x+5\)

\(\Rightarrow\orbr{\begin{cases}x-3=-4+x-5\\x-3=4-x+5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x-x=-4-5+3\\x+x=4+5+3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x\ne-6\text{ ( loại ) }\\2x=12\end{cases}}\)\(\Rightarrow\text{ }x=6\)

c, \(\sqrt{\left(x+7\right)^2}+\left(x^2-49\right)^{2012}=0\)

\(\left(x+7\right)+\left(x^2-49\right)^{2012}=0\)

\(\Rightarrow\hept{\begin{cases}x+7=0\\\left(x^2-49\right)^{2012}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2-49=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2=49\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x=\pm7\end{cases}}\)

\(\)\(\Rightarrow\text{ }x=-7\)

d, \(2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}\le0\)

\(\text{Vì }\hept{\begin{cases}2\left|3-x\right|^{2017}\ge0\\\left(y-x+1\right)^{2016}\ge0\end{cases}}\) \(\Rightarrow\text{ Chỉ xảy ra trường hợp }2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}=0\)

\(\Rightarrow\hept{\begin{cases}2\left|3-x\right|^{2017}=0\\\left(y-x+1\right)^{2016}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left|3-x\right|^{2017}=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3-x=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y-3+1=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3\\y-2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

10 tháng 2 2020

2.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-3-3y-5+4z-4}{2.4-3.3+4.5}=\frac{2x-3y+4z-12}{19}=\frac{75-12}{19}=\frac{63}{19}\)

=> x,y,z=

11 tháng 2 2020

1) Ta có : \(\sqrt{50}+\sqrt{26}+1>\sqrt{49}+\sqrt{25}+1=7+5+1=13=\sqrt{169}>\sqrt{168}\)

=> \(\sqrt{50}+\sqrt{26}+1>\sqrt{168}\)

6) Ta có : \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}}\)

Khi đó M > \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

=> M > 1

Lại có : \(\hept{\begin{cases}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{b+a}{a+b+c}\\\frac{c}{c+a}< \frac{c+b}{a+b+c}\end{cases}}\)

Khi đó M < \(\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

=> M < 2 (2)

Kết hợp (1) và (2) => 1 < M < 2

=> \(M\notinℤ\)(ĐPCM)

3 tháng 12 2019

1) So sánh

Ta có : 224 = 23.8 = (23)8 = 88

           316 = 32.8 = (32)8 = 98

Vì 88 < 98

=>  224 < 316 

2) Tính

\(\left(0,25\right)^4.1024=\left(\frac{1}{4}\right)^4.1024=\frac{1}{4^4}.2^{10}=\frac{1}{\left(2^2\right)^4}.2^{10}=\frac{1}{2^8}.2^{10}=\frac{2^{10}}{2^8}=2^2=4\)

3) Tìm x nguyên

(x - 1)x + 2 = (x - 1)x + 6

=> (x - 1)x + 6 - (x - 1)x + 2 = 0

=> (x - 1)x + 2.[(x - 1)4 - 1] = 0

=> \(\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^4-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1^4\end{cases}\Rightarrow}\orbr{\begin{cases}x-1=0\\x-1=\pm1\end{cases}}}\)

Nếu x - 1 = 0 => x = 1(tm)

Nếu x - 1 = - 1 => x = 0(tm)

Nếu x - 1 = 1 => x = 2(tm)

Vậy \(x\in\left\{1;0;2\right\}\)

3 tháng 12 2019

Bài 1:Ta có:

2^24=2^(6.4)=64^4

3^16=3^(4.4)=81^4

Bài 2.Ta có:

(0.25)^4=1/4.1/4.1/4.1/4=1/256

=>1/256.1024=4

Bài 3:

Ta có:(x-1)^(x+2)=(x-1)^(x+6)

Chia hai vế cho (x-1)^(x+2),do đó:

1=(x-1)^(x+4)

<=>x-1=1

<=>x=2

Hoặc chia hai vế cho (x-1)^(x+6)

(x-1)^(x-4)=1

<=>x-1=1

<=>x=2

3 tháng 3 2020

pt <=> \(\frac{2}{\left|x-2\right|+2}=\frac{3}{3\left|2-x\right|+1}\)

<=> \(6\left|2-x\right|+2=3\left|x-2\right|+6\)

<=> \(3\left|x-2\right|=4\)( vì | x - 2 | = | 2 - x | )

<=> \(\left|x-2\right|=\frac{4}{3}\)

TH1: \(x-2=\frac{4}{3}\)

<=> \(x=\frac{10}{3}\)

TH2: \(x-2=-\frac{4}{3}\)

<=> \(x=\frac{2}{3}\)

Vậy x = 10/3 hoặc x = 2/3

3 tháng 3 2020

thank

26 tháng 7 2019

a, \(\left(\sqrt{x}-1\right)^2=0,5625\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}-1=0,75\\\sqrt{x}-1=-0,75\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=1,75\\\sqrt{x}=0,25\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3,0625\\x=0,0625\end{cases}}\)

b,  giả sử \(\sqrt{7}\) là số hữu tỉ 

\(\Rightarrow\)  \(\sqrt{7}=\frac{m}{n}\)

\(\Rightarrow7=\frac{m^2}{n^2}\)

\(\Rightarrow m^2=7n^2\)

\(\Rightarrow m^2⋮n^2\)

\(\Rightarrow m⋮n\) (vô lí)

vậy giả sử trên sai => \(\sqrt{7}\) là số vô tỉ

26 tháng 7 2019

a) TA CÓ : (\(\sqrt{x}\)- 1 ) = 0,5625 = ( 0,75 )2

=> \(\sqrt{x}\)- 1 = 0,75

=>    \(\sqrt{x}\)     = 1,75

=> x = 3,0625 

Vậy x = 3,0625

b) TA DÙNG PHƯƠNG PHÁP PHẢN CHỨNG

Giả sử\(\sqrt{7}\)là số hữu tỉ => \(\sqrt{7}\)sẽ có thể viết dưới dạng một phân số tối giản có dạng \(\frac{a}{b}\)

Ta có : \(\sqrt{7}\)\(\frac{a}{b}\)=> 7 = \(\frac{a^2}{b^2}\)

=> a2 = 7b=> a2 chia hết cho b2

=> a chia hết cho b ( vô lý vì \(\frac{a}{b}\)đã là phân số tối giản )

VẬY GIẢ SỬ PHẢN CHỨNG LÀ SAI => \(\sqrt{7}\)LÀ SỐ VÔ TỈ ( ĐPCM )

NẾU THẤY ĐÚNG THÌ NHỚ CHO MÌNH NHA!!!><

11 tháng 2 2019

Bạn tham khảo ở đây nhé, mình làm rồi đấy: https://olm.vn/hoi-dap/detail/211418926066.html

16 tháng 11 2019
Cop bằng niềm tin hi vọng bn ạ
27 tháng 2 2019

a) (x - 1)5 = -243

=> (x - 1)5 = (-3)5

=> x - 1 = -3

=> x = -3 + 1

=> x = -2

b) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

=> (x + 2).(1/11 + 1/12 +1/3 - 1/4 - 1/15) = 0

=> x + 2 = 0

=> x = 0 - 2

=> x = 2