Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: |2x-1|=|x+1|
=>2x-1=x+1 hoặc 2x-1=-x-1
=>x=2 hoặc 3x=0
=>x=2 hoặc x=0
4: \(\Leftrightarrow\left\{{}\begin{matrix}x+\sqrt{5}=0\\y-\sqrt{3}=0\\x-y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\sqrt{5}\\y=\sqrt{3}\\z=x-y=-\sqrt{5}-\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}\\x=-2\sqrt{2}\\x=25\end{matrix}\right.\)
a: \(-\dfrac{3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}\left(x+1\right)\)
=>\(-\dfrac{3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}x+\dfrac{1}{2}\)
=>\(-\dfrac{3}{2}x-\dfrac{1}{2}x=\dfrac{1}{2}-\dfrac{1}{4}\)
=>\(-2x=\dfrac{1}{4}\)
=>\(2x=-\dfrac{1}{4}\)
=>\(x=-\dfrac{1}{4}:2=-\dfrac{1}{8}\)
b: ĐKXĐ: x>=0
\(\left(6-3\sqrt{x}\right)\left(\left|x\right|-7\right)=0\)
=>\(\left\{{}\begin{matrix}6-3\sqrt{x}=0\\\left|x\right|-7=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3\sqrt{x}=6\\\left|x\right|=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=2\\\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-7\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=4\left(nhận\right)\end{matrix}\right.\)
\(\left(\sqrt{x}-1+5\right)\left(x-6\sqrt{x}\right)\)
\(=\left(\sqrt{x}+4\right)\left(x-6\sqrt{x}\right)\)
\(=x\sqrt{x}-6x+4x-24\sqrt{x}\)
\(=x\sqrt{x}-2x-24\sqrt{x}\)
Đề bài?
ĐKXĐ : x\(\ge0\)
Ta có: \(\left(\sqrt{x}+4\right)\left(x-6\sqrt{x}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}+4=0\\x-6\sqrt{x}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=-4\left(L\right)\\\sqrt{x}\left(\sqrt{x}-6\right)=0\end{cases}}\)
=>\(\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=6\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=36\end{cases}}}\)
\(\left(\sqrt{x-1}+5\right)\left(x-6\sqrt{x}\right)=0\)
Điều kiện xác định: \(x\ge1\)
phương trình <=> \(\orbr{\begin{cases}\sqrt{x-1}+5=0\\x-6\sqrt{x}=0\end{cases}}\)
*\(\sqrt{x-1}+5=0\Leftrightarrow\sqrt{x-1}=-5\)=> vô nghiệm vì \(\sqrt{x-1}\ge0\)
*\(x-6\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-6\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\\sqrt{x}=6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(loai\right)\\x=36\left(tmdk\right)\end{cases}}\)
vậy nghiệm của phương trình là x = 36
\(\left(\sqrt{x-1}+5\right)\left(x-6\sqrt{x}\right)=0\)
ĐK : \(x\ge1\)
Ta có : \(\sqrt{x-1}+5\ge5>0\forall x\ge0\)
=> Để \(\left(\sqrt{x-1}+5\right)\left(x-6\sqrt{x}\right)=0\)
thì \(x-6\sqrt{x}=0\)
=> \(\sqrt{x}\left(\sqrt{x}-6\right)=0\)
=> \(\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}=6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=36\left(tm\right)\end{cases}}\)
Vậy x = 36