\(x\) biết:

\(\left(2x-1\right)^3\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 8 2021

\(\Leftrightarrow\left(8x^3-12x^2+6x-1\right)-\left(8x^3-6x^2\right)=5\)

\(\Leftrightarrow8x^3-12x^2+6x-1-8x^3+6x^2=5\)

\(\Leftrightarrow6x^2-6x+6=0\)

\(\Leftrightarrow x^2-x+1=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)

Do \(\left(x-\dfrac{1}{2}\right)^2\ge0;\forall x\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0;\forall x\)

\(\Rightarrow\) Phương trình vô nghiệm

Ta có: \(\left(2x-1\right)^3-2x\left(4x^2-3x\right)=5\)

\(\Leftrightarrow8x^3-6x^2+12x-1-8x^3+6x^2=5\)

\(\Leftrightarrow12x=6\)

hay \(x=\dfrac{1}{2}\)

1, \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)

\(\Leftrightarrow-4x^2+28x+4x^3-20x=28x^2-13\)

\(\Leftrightarrow-32x^2+8x+4x^3-13=0\)( vô nghiệm )

2, \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)

\(\Leftrightarrow12x^3-7x^2-10x-7x^2-35x=-2x^2+11x-12+12x^3+2x^2\)

\(\Leftrightarrow12x^3-14x^2-45x=11x-12+12x^3\)

\(\Leftrightarrow-14x^2-56x-12=0\)( vô nghiệm )

20 tháng 8 2020

Mình làm riêng ra nhá , chứ nhiều quá nên thông cảm cho mình :))

1. \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)

=> \(-4x^2+28x+4x^3-20x=28x^2-13\)

=> \(-4x^2+4x^3+\left(28x-20x\right)=28x^2-13\)

=> \(-4x^2+4x^3+8x-28x^2+13=0\)

=> \(\left(-4x^2-28x^2\right)+4x^3+8x+13=0\)

=> \(-32x^2+4x^3+8x+13=0\)

=> vô nghiệm

2. \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)

=> \(4x^2\left(3x+2\right)-5x\left(3x+2\right)-7x\left(x+5\right)=-4\left(-2x+3\right)+x\left(-2x+3\right)+12x^3+2x^2\)

=> \(12x^3+8x^2-15x^2-10x-7x^2-35x=8x-12-2x^2+3x+12x^3+2x^2\)

=> \(12x^3+8x^2-15x^2-10x-7x^2-35x-8x+12+2x^2-3x-12x^3-2x^2=0\)

=> \(\left(12x^3-12x^3\right)+\left(8x^2-15x^2-7x^2+2x^2-2x^2\right)+\left(-10x-35x-8x-3x\right)+12=0\)

=> \(-14x^2-56x+12=0\)

=> .... tự tìm

Câu c dấu bằng chỗ nào ?

11 tháng 8 2020

a)  -4x(x - 7) + 4x(x2 - 5) = 28x2 - 13

=> -4x2 + 28x + 4x2 - 20x = 28x2 - 13

=> (-4x2 + 4x2) + (28x - 20x) = 28x2 - 13

=> 8x = 28x2 - 13

=> 8x - 28x2 + 13 = 0

=> phương trình vô nghiệm

b) (4x2 - 5x)(3x + 2) - 7x(x + 5) = (-4 + x)(-2x - 3) + 12x2 + 2x2

=> 4x2(3x + 2) - 5x(3x + 2) - 7x2 - 35x = -4(-2x - 3) + x(-2x - 3) + 14x2

=> 12x3 + 8x2 - 15x2 - 10x - 7x2 - 35x = 8x + 12 - 2x2 - 3x + 14x2

=> 12x3 + (8x2 - 15x2 - 7x2) + (-10x - 35x) = (8x - 3x) + 12 + (-2x2 + 14x2)

=> 12x3 - 14x2 - 45x = 5x + 12 + 12x2

=> 12x3 - 14x2 - 45x - 5x - 12 - 12x2 = 0

=> 12x3 + (-14x2 - 12x2) + (-45x - 5x) - 12 = 0

=> 12x3 - 26x2 - 50x - 12 = 0

Làm nốt

Cái câu b sửa cái đề lại nhé dấu " = " ở chỗ (-2x = 3) là gì vậy?

11 tháng 8 2020

a, \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)

\(\Leftrightarrow-4x^2+28x+4x^3-20x=28x^2-13\)

\(\Leftrightarrow-32x^2+8x+4x^3+13=0\)( vô nghiệm ) 

18 tháng 7 2016

a) \(3x\left(2x+1\right)=5\left(2x+1\right)\)

\(3x=5\)

\(x=\frac{5}{3}\)

b) \(\left(3x-8\right)^2=\left(2x-7\right)^2\)

\(3x-8=2x-7\)

\(x=1\)

c) \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2=0\)

\(\left(4x^2-3x-18\right)^2=\left(4x^2+3x\right)^2\)

\(4x^2-3x-18=4x^2+3x\)

\(6x=-18\)

\(x=-3\)

d) Sai đề

e) ko bt

4 tháng 11 2016

này như thế này phải không

(4x2+4x-7x-7)(2x+3)= 4x(x+1)-7(x+1)= (4x-7)(x+1)

giúp mk với tứ tư mk phải nộp rùi bài 1: a, \(2x\left(3x^2-5x+3\right)\) b, \(-2x\left(x^2+5x-3\right)\) c, \(\dfrac{-1}{2}x\left(2x^3-4x+3\right)\) bài 2: a,\(\left(2x-1\right).\left(x^2-5-4\right)\) b,\(-\left(5x-4\right).\left(2x+3\right)\) c,\(\left(2x-y\right).\left(4x^2-2xy+y^2\right)\) d,\(\left(3x-4\right).\left(x+4\right).\left(5-x\right).\left(2x^2+3x-1\right)\) e,\(7\left(x-4\right)-\left(7x+3\right).\left(2x^2-x+4\right)\) bài 3: c/m rằng gtri của...
Đọc tiếp

giúp mk với tứ tư mk phải nộp rùi

bài 1:

a, \(2x\left(3x^2-5x+3\right)\)

b, \(-2x\left(x^2+5x-3\right)\)

c, \(\dfrac{-1}{2}x\left(2x^3-4x+3\right)\)

bài 2:

a,\(\left(2x-1\right).\left(x^2-5-4\right)\)

b,\(-\left(5x-4\right).\left(2x+3\right)\)

c,\(\left(2x-y\right).\left(4x^2-2xy+y^2\right)\)

d,\(\left(3x-4\right).\left(x+4\right).\left(5-x\right).\left(2x^2+3x-1\right)\)

e,\(7\left(x-4\right)-\left(7x+3\right).\left(2x^2-x+4\right)\)

bài 3:

c/m rằng gtri của biểu thức ko phụ thuộc vào gtri của biến

a,\(x\left(3x+12\right)-\left(7x-20\right)+x^2\left(2x-3\right)-x\left(2x^2+5\right)\)

b,\(3\left(2x-1\right)-5\left(x-3\right)+6\left(3x-4\right)-19x\)

bài 4 :tìm x biết

a, \(3x+2\left(5-x\right)=0\)

b,\(x\left(2x-1\right).\left(x+5\right)-\left(2x^2+1\right).\left(x+4,5\right)=3,5\)

c,\(3x^2-3x\left(x-2\right)=36\)

d,\(\left(3x^2-x+1\right).\left(x-1\right)+x^2.\left(4-3x\right)=\dfrac{5}{2}\)

4
11 tháng 12 2017

1,

a,\(2x\left(3x^2-5x+3\right)\)

\(=6x^3-10x^2+6x\)

b,\(-2x\left(x^2+5x-3\right)\)

\(=-2x^3-10x^2+6x\)

c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)

\(=-x^4+2x^2-\dfrac{3}{2}x\)

Bài 2:

a) \(\left(2x-1\right)\left(x^2-5-4\right)\)

\(=\left(2x-1\right)\left(x^2-9\right)\)

\(=2x^3-18x-x^2+9\)

b) \(-\left(5x-4\right)\left(2x+3\right)\)

\(=-\left(10x^2+15x-8x-12\right)\)

\(=-10x^2-7x+12\)

c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)

\(=8x^3-y^3\)

11 tháng 4 2017

a.\(|3x|=x+7\)

Nếu \(3x\ge0\Leftrightarrow x\ge0\).Khi đó ta có:

\(3x=x+7\)

\(\Leftrightarrow2x=7\)

\(\Leftrightarrow x=\dfrac{7}{2}=3,5\)

Nếu \(3x< 0\Leftrightarrow x< 0\).Khi đó ta có:

\(-3x=x+7\)

\(\Leftrightarrow-4x=7\)

\(\Leftrightarrow x=-\dfrac{7}{4}\)

2 tháng 3 2020

\(\left(3x-5\right)\left(-2x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-5=0\\-2x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=5\\-2x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{-7}{2}\end{cases}}}\)

2 tháng 3 2020

\(9x^2-1=\left(1+3x\right)\left(2x-3\right)\)

\(\Leftrightarrow9x^2-1=2x-3+6x^2-9x\)

\(\Leftrightarrow9x^2-1=-7x-3+6x^2\)

\(\Leftrightarrow9x^2-1+7x+3-6x^2=0\)

\(\Leftrightarrow3x^2+2+7x=0\)

\(\Leftrightarrow3x^2+6x+x+2=0\)

\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{3}\end{cases}}\)