K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

Ta có : 

\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)....\left(1+\frac{1}{2014.2016}\right)\)

\(=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}.....\frac{4060225}{2014.2016}\)

\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}....\frac{2015.2015}{2014.2016}\)

\(=\frac{2.3.4....2015}{1.2.3....2014}.\frac{2.3.4....2015}{3.4.5....2016}\)

\(=\frac{2015}{1}.\frac{2}{2016}\)

\(=2015.\frac{1}{1008}=\frac{2015}{1008}\)

\(\Rightarrow\frac{2015}{1008}=\frac{x}{1008}\Rightarrow x=2015\)

Vậy \(x=2015\)

Ủng hộ mk nha !!! ^_^

24 tháng 7 2016

ê cần giúp ko0

17 tháng 4 2019

G = \(\frac{2^2}{1.3}\).\(\frac{3^2}{2.4}\).\(\frac{4^2}{3.5}\).....\(\frac{50^2}{49.51}\)                         

=> G = \(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).\(\frac{4.4}{3.5}\).....\(\frac{50.50}{49.51}\)

=> G = \(\frac{2.2.3.3.4.4.....50.50}{1.2.3.3.4.4.....50.51}\)

=> G = \(\frac{2.50}{1.51}\)

=> G = \(\frac{100}{51}\)

17 tháng 4 2019

公关稿黄继线长旧款您

22 tháng 4 2019

đụ cha mi

mi trù ta thi rớt HK II mà ta giúp mày hả

mấy bài này cũng dễ ẹt nữa

đừng có mơ ta sẽ giúp mày

ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha
 

3 tháng 5 2019

\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{99\cdot101}\right)\)

\(B=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\frac{100^2}{99\cdot101}\)

\(B=\frac{2^2\cdot3^2\cdot4^2\cdot\cdot\cdot100^2}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot\cdot\cdot99\cdot101}\)

\(B=\frac{\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)}{\left(1\cdot2\cdot3\cdot\cdot\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot\cdot\cdot101\right)}\)

\(B=\frac{100\cdot2}{1\cdot101}\)

\(B=\frac{200}{101}\)

1 tháng 5 2016

99.101 mới đúg nhé

=\(\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}.....\frac{10000}{99.101}\)

=\(\frac{2^2.3^2.4^2......100^2}{\left(1.2.3.....99\right).\left(3.4.5.....101\right)}=\frac{\left(2.3.4....100\right).\left(2.3.4....100\right)}{\left(1.2.3....99\right).\left(3.4.5......101\right)}\)

=\(\frac{100.2}{1.101}=\frac{200}{101}\)

27 tháng 8 2018

\(\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2004\cdot2006}\right)\)

\(=\frac{4}{1\cdot3}+\frac{9}{2\cdot4}+\frac{16}{3\cdot5}+...+\frac{420025}{2004\cdot2006}\)

\(=\frac{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2005\cdot2005\right)}{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2004\cdot2006\right)}\)

\(=\frac{\left(2\cdot3\cdot4\cdot...\cdot2005\right)\left(2\cdot3\cdot4\cdot...\cdot2005\right)}{\left(1\cdot2\cdot3\cdot...\cdot2004\right)\left(3\cdot4\cdot5\cdot...\cdot2006\right)}\)

\(=\frac{2005\cdot2}{1\cdot2006}\)

\(=\frac{4010}{2006}\)

27 tháng 8 2018

\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)...\left(1+\frac{1}{2004.2006}\right)\)

\(=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}....\frac{2004.2006+1}{2004.2006}\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}....\frac{2005^2}{2004.2006}\)

\(=\frac{2.3....2005}{1.2....2004}.\frac{2.3...2005}{3.4....2006}\)

\(=2005.\frac{2}{2006}=\frac{2005}{1003}\)