Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì vai trò của x, y bình đẳng nên có thể giả sử x≤yx≤y.
- Nếu x = 1 thì x+1=2⋮yx+1=2⋮y ⇒y=1⇒y=1 hoặc 2 ⇒(x,y)=(1,1),(1,2)⇒(x,y)=(1,1),(1,2).
- Nếu x≥2x≥2 thì 2≤x≤y2≤x≤y
Có ⎧⎨⎩x+1⋮yy+1⋮x{x+1⋮yy+1⋮x
⇒(x+1)(y+1)=(xy+x+y+1)⋮xy⇒(x+1)(y+1)=(xy+x+y+1)⋮xy ⇒(x+y+1)⋮xy⇒(x+y+1)⋮xy
⇒x+y+1xy=1x+1y+1xy⇒x+y+1xy=1x+1y+1xy là số nguyên dương.
Mà 2≤x≤y2≤x≤y nên 1x+1y+1xy≤12+12+14=541x+1y+1xy≤12+12+14=54
Từ đó suy ra 1x+1y+1xy=11x+1y+1xy=1 (1)
⇒1=1x+1y+1xy≤1x+1x+12x=52x⇒1=1x+1y+1xy≤1x+1x+12x=52x ⇒2x≤5⇒2x≤5 ⇒⇒ x = 2
Thay vào (1) ta có 12+1y+12y=112+1y+12y=1 ⇒y=3⇒y=3
Vậy các cặp số (x, y) phải tìm là (1, 1), (1, 2), (2, 1), (2, 3), (3, 2).
cả 2 cách đều đúng, nói như vậy phải gộp 2 cái lại
bạn làm theo cách một chúng ta dc:
\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
Đến đây ko phải chỉ có 6x=12 mà phải nghĩ đến nếu 2x+3y-1=0 thì x = bao nhiêu cũng đúng v~
Khi 2x+3y-1=0 thì nó thành cách 2 đấy
Bây giờ mới thấy bài này nhảm quá. Có nhiều x, y mà. Tìm bằng thánh. Gặp bài này nhiều rồi mà giờ mới để ý đó.
v~ thiệt
Ta có : y(x+y+z) + x(x+y+z) + z(x+y+z) = 18 +(-12) + 3
=> (x+y+z)^2 = 9
=> x+y+z = 3 hoặc -3
Xét x+y+z = 3
=> y = 6 ; x = -4 ; z = 1
Xét x+y+z = -3
=> y = -6 ; x= 4 ; z = -1
Vậy (x;y;z) = (6;-4;1) ; (-6;4;-1)
Ta có:
\(x.\left(x+y\right)+y.\left(x+y\right)=\frac{1}{48}+\frac{1}{24}\)
=> \(\left(x+y\right)^2=\frac{1}{16}\)
=> \(\left[\begin{array}{nghiempt}x+y=\frac{1}{4}\\x+y=-\frac{1}{4}\end{array}\right.\)
+ Với \(x+y=\frac{1}{4}\) => \(x=\frac{1}{48}:\frac{1}{4}=\frac{1}{12};y=\frac{1}{24}:\frac{1}{4}=\frac{1}{6}\)
+ Với \(x+y=-\frac{1}{4}\) => \(x=\frac{1}{48}:\frac{-1}{4}=-\frac{1}{12};y=\frac{1}{24}:\frac{-1}{4}=-\frac{1}{6}\)
Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: \(\left(\frac{1}{12};\frac{1}{6}\right);\left(-\frac{1}{12};-\frac{1}{6}\right)\)
Lấy ( 1 ) chia ( 2 )
\(\Rightarrow\frac{x}{y}=-\frac{3}{4}\)
\(x=-\frac{3}{4}y\)
Thế vào ( 2 )
\(y\left(-\frac{3}{4}y+y\right)=\frac{1}{9}\)
\(y\left(\frac{1}{4}y\right)=\frac{1}{9}\)
\(\frac{1}{4}y^2=\frac{1}{9}\)
\(y^2=\frac{1}{9}:\frac{1}{4}\)
\(y^2=\frac{4}{9}\)
\(\orbr{\begin{cases}y=\frac{2}{3}\\y=-\frac{2}{3}\end{cases}}\)
TH 1
y = 2/3
\(x=-\frac{3}{4}y=-\frac{3}{4}\cdot\frac{2}{3}=-\frac{1}{2}\)
TH 2
y = -2/3
\(x=-\frac{3}{4}y=-\frac{3}{4}\cdot-\frac{2}{3}=\frac{1}{2}\)