\(\frac{x}{3}\)-\(\frac{3}{4}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

Tìm x biết:

\(\frac{x}{3}-\frac{3}{4}=\frac{1}{12}\)

\(\frac{x}{3}=\frac{1}{12}+\frac{3}{4}\)

\(\frac{x}{3}=\frac{5}{6}\)

\(x=\frac{5}{6}.3\)

\(x=\frac{5}{2}\)

Vậy \(x=\frac{5}{2}\)

\(\frac{29}{30}-\left(\frac{13}{23}+x\right)=\frac{7}{69}\)

\(\frac{13}{23}+x=\frac{29}{30}-\frac{7}{69}\)

\(\frac{13}{23}+x=\frac{199}{230}\)

\(x=\frac{199}{230}-\frac{13}{23}\)

\(x=\frac{3}{10}\)

Vậy \(x=\frac{3}{10}\)

Bài 2: tính

\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)

\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(=\frac{1}{5}-\frac{1}{11}\)

\(=\frac{6}{55}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}-\frac{1}{50}\)

\(=\frac{49}{50}\)

6 tháng 4 2018

Bài 2:

1/30+1/42+1/56+1/72+1/90+1/110

=1/5.6+1/6.7+1/7.8+1/8.9+1/9.10+1/10.11

=1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11

=1/5-1/11=6/55

b)1/1.2+1/2.3+...+1/49.50

=1-1/2+1/2-1/3+...+1/49-1/50

=1-1/50

=49/50

25 tháng 1 2019

1

x + 7/12= 15/18

x= 15/18-7/12

x= 1/4

k mk nhé

25 tháng 1 2019

3

4/10= 2/5

\(\frac{x}{15}\)=\(\frac{2}{5}\)

x= 15:5x2= 6

x= 6

k mk nhé

7 tháng 2 2017

\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)

\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)

\(A=7.\frac{13}{28}\)

\(A=\frac{13}{4}\)

25 tháng 3 2017

làm chi tiết k bn?

25 tháng 3 2017

Bài1

a) 25/42 - 20/63 =5/18

b) 9/50 - 13/75 - 1/6 = -4/25

c) 2/15 - 2/65 - 4/39 = 0

Bài2

a)  x + 7/12 =17/18-1/9                       b) 29/30 - (18/23 + x)=7/69

     x + 7/12 = 5/6                                                       18/23 + x =29/30 - 7/69

     x              =5/6 - 7/12                                              18/23 +x = 199/230

     x              = 1/4                                                                      x = 199/230 - 18/23

                                                                                                    x= 19/230

     

4 tháng 7 2019

a)\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{10.11}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)

\(1-\frac{1}{11}\)

\(\frac{10}{11}\)

b) Đặt A = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\)

\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\)

=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\)

Lấy 2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)

              A  = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^7}\)

              A  = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^2}-...-\frac{1}{2^6}+\frac{1}{2^6}-\frac{1}{2^7}\)

             A   =\(1-\frac{1}{2^7}\)

4 tháng 7 2019

Đặt \(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}+\frac{1}{110}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}+\frac{1}{10.11}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(A=1-\frac{1}{11}\)

\(A=\frac{10}{11}\)

Đặt \(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\left(1\right)\)

\(2B=\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+\frac{2}{2^4}+\frac{2}{2^5}+\frac{2}{2^6}+\frac{2}{2^7}\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\left(2\right)\)

Lấy \(\left(2\right)-\left(1\right)\)hay \(2B-B\)ta có:

\(2B-B=\left(1+\frac{1}{2}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)\)

\(\Rightarrow B=1-\frac{1}{2^7}\)

\(\Rightarrow B=\frac{2^7-1}{2^7}=\frac{128-1}{128}=\frac{127}{128}\)

HOK TOT

29 tháng 3 2019

a) \(\frac{29}{30}\)- (\(\frac{13}{23}\)+X)=\(\frac{7}{69}\)

\(\frac{13}{23}\)+X=\(\frac{29}{30}\)-\(\frac{7}{69}\)

\(\frac{13}{23}\)+X=\(\frac{199}{230}\)

X=\(\frac{199}{230}\)-\(\frac{13}{23}\)

X=\(\frac{3}{10}\)

b)1/2+1/6+1/12+...+1/x(x+1)=2011/2012

=>1/1.2+1/2.3+1/3.4+...+1/x(x+1)=2011/2012

=>1-1/2+1/2-1/3+1/3+1/4+...+1/x+1/x+1=2011/2012

=>1-1/x+1=2011/2012

=>1/x+1=1-2011-2012

=>1/x+1=2012/2012-2011/2012

1/x+1=1/2012

=>x+1=2012

=>x=2011

29 tháng 3 2019

a) 3/10

7 tháng 8 2017

\(a,\left(10\frac{2}{9}.2\frac{3}{5}\right)-6\frac{2}{9}=\frac{1196}{45}-\frac{56}{9}=\frac{1196}{45}-\frac{280}{45}=\frac{916}{45}\)

\(b,\frac{6}{7}+\frac{1}{7}.\frac{2}{7}+\frac{1}{7}.\frac{5}{7}=\frac{1}{7}\left(6+\frac{2}{7}+\frac{5}{7}\right)=\frac{1}{7}.7=1\)

\(c,3.136.8+4.14.6-14.150=3264+336-2100=1500\)

\(d,\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{110}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{10.11}\)\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)

\(e,\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}=\frac{1}{3}-\frac{1}{39}=\frac{4}{13}\)

14 tháng 4 2018

a)43/5

b)7/7=1

c)1500

10 tháng 9 2019

a)\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\\ =\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\\ =\frac{1}{3}.\left(1-\frac{1}{103}\right)\\ =\frac{1}{3}.\frac{102}{103}\\ =\frac{34}{103}\)

9 tháng 9 2019

@Băng Băng 2k6 lm ik