Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne=\)
Nên x + 1 = 0 => x = -1
b) \(\frac{x+1}{14}+\frac{x+2}{13}=\frac{x+3}{12}+\frac{x+4}{11}\)
\(\Leftrightarrow\frac{x+1}{14}+1+\frac{x+2}{13}+1=\frac{x+3}{12}+1+\frac{x+4}{11}+1\)
\(\Leftrightarrow\frac{x+15}{14}+\frac{x+15}{13}=\frac{x+15}{12}+\frac{x+15}{11}\)
\(\Leftrightarrow\frac{x+15}{14}+\frac{x+15}{13}-\frac{x+15}{12}-\frac{x+15}{11}=0\)
\(\Leftrightarrow\left(x+15\right)\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)=0\)
Vì \(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\ne0\)
Nên x +15 = 0 => x = -15
a,\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)=\left(x+1\right).\left(\frac{1}{13}+\frac{1}{14}\right)\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)-\left(x+1\right).\left(\frac{1}{13}+\frac{1}{14}\right)=0\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}>\frac{1}{13};\frac{1}{11}>\frac{1}{14}\Rightarrow\frac{1}{10}+\frac{1}{11}>\frac{1}{13}+\frac{1}{14}\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}>\frac{1}{13}+\frac{1}{14}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}>0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
b, Bạn cộng thêm 1 vào \(\frac{x+1}{14};\frac{x+1}{13};\frac{x+1}{12};\frac{x+1}{11}\)Mội bên phân số 1 đơn vị rồi áp dụng như bài 1
a, (x2 - 5)(x2 - 24) < 0
=> x2 - 5 và x2 - 24 trái dấu
Mà x2 - 5 > x2 - 24 => \(\hept{\begin{cases}x^2-5>0\\x^2-24>0\end{cases}\Rightarrow5< x^2< 24}\)
Vì x \(\in\)Z nên x2 = 9;16
+) x2 = 9 => x = 3 hoặc x = -3
+) x2 = 16 => x = 4 hoặc x = -4
Vậy...
b,
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Mà \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)\ne0\)
=> x + 1 = 0 => x = 0 - 1 => x = -1
\(\frac{x+1}{14}+\frac{x+2}{13}=\frac{x+3}{12}+\frac{x+4}{11}\)
\(\Rightarrow\left(\frac{x+1}{14}+1\right)+\left(\frac{x+2}{13}+1\right)=\left(\frac{x+3}{12}+1\right)+\left(\frac{x+4}{11}+1\right)\)
\(\Rightarrow\frac{x+15}{14}+\frac{x+15}{13}=\frac{x+15}{12}+\frac{x+15}{11}\)
\(\Rightarrow\frac{x+15}{14}+\frac{x+15}{13}-\frac{x+15}{12}-\frac{x+15}{11}=0\)
\(\Rightarrow\left(x+15\right)\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)=0\)
Mà \(\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)\ne0\)
=> x + 15 = 0 => x = 0 - 15 => x = -15
(x+2)/17+(x+4)/15+(x+6)/13=(x+8)/11+(x+10)/9+(x+12)/7
=>(x+2+17)/17+(x+4+15)/15+(x+6+13)/13=(x+8+11)/11+(x+10+9)/9+(x+12+7)/7
=>(x+19)/17+(x+19)/15+(x+19)/13=(x+19)/11+(x+19)/9+(x+19)/7
=>(x+19)/17+(x+19)/15+(x+19)/13-(x+19)/11-(x+19)/9-(x+19)/7=0
=>(x+19)*(1/17+1/15+1/13-1/11-1/9-1/7)=0
=>x+19=0
=>x=19
áp dụng tc tỉ lệ thức ta có :
\(\Leftrightarrow\frac{671x+2804}{3315}=\frac{239x+2462}{693}\Rightarrow\left(671x+2804\right)693=3315\left(239x+2462\right)\)
=>(671x+2804)693=693(671x+2804) (VT)
<=>693(671x+2804)=3315(239x+2462)
=>465003x+1943172=792285x+8161530
=>-327282x=621835
=>x=621835:(-327282)
=>x=-19
\(\frac{x+2}{17}+\frac{x+4}{15}+\frac{x+6}{13}=\frac{x+8}{11}+\frac{x+10}{9}+\frac{x+12}{7}\)
\(\Rightarrow\left(\frac{x+2}{17}+1\right)+\left(\frac{x+4}{15}+1\right)+\left(\frac{x+6}{13}+1\right)-\left(\frac{x+8}{11}+1\right)-\left(\frac{x+10}{9}+1\right)-\left(\frac{x+12}{7}+1\right)=0\)
\(\Rightarrow\frac{x+19}{17}+\frac{x+19}{15}+\frac{x+19}{13}-\frac{x+19}{11}-\frac{x+19}{10}-\frac{x+19}{7}=0\)
\(\Rightarrow\left(x+19\right)(\frac{1}{17}+\frac{1}{15}+\frac{1}{13}-\frac{1}{11}-\frac{1}{9}-\frac{1}{7})\)
\(\Rightarrow x+19=0\)\(\left(Vì\frac{1}{17}+\frac{1}{15}+\frac{1}{13}-\frac{1}{11}-\frac{1}{9}-\frac{1}{7}\ne0\right)\)
\(\Rightarrow x=-19\)
Ta có : \(\frac{x+2}{17}+\frac{x+4}{15}+\frac{x+6}{13}=\frac{x+8}{11}+\frac{x+10}{9}+\frac{x+12}{7}\)
\(\Rightarrow\left(\frac{x+2}{17}+1\right)+\left(\frac{x+4}{15}+1\right)+\left(\frac{x+6}{13}+1\right)=\left(\frac{x+8}{11}+1\right)+\left(\frac{x+10}{9}+1\right)+\left(\frac{x+12}{7}+1\right)\)
\(\Rightarrow\frac{x+19}{17}+\frac{x+19}{15}+\frac{x+19}{13}-\frac{x+19}{11}-\frac{x+19}{9}-\frac{x+19}{7}=0\)
\(\Rightarrow\left(x+19\right)\left(\frac{1}{17}+\frac{1}{15}+\frac{1}{13}-\frac{1}{11}-\frac{1}{9}-\frac{1}{7}\right)=0\)
\(\Rightarrow x+19=0\Rightarrow x=-19\)
\(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}=\frac{x+2}{12^{12}}\frac{x+2}{13^{13}}\)
=> x + 2 = 0
=> x = 0 - 2
=> x = -2