Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{2}X\)\(-\)\(\frac{1}{3}\)= \(\frac{1}{6}\)
\(\frac{3}{2}X\)= \(\frac{1}{6}\)+ \(\frac{1}{3}\)
\(\frac{3}{2}X\)= \(\frac{1}{2}\)
\(X\)= \(\frac{3}{2}\): \(\frac{1}{2}\)
\(X\)= \(\frac{3}{2}\)x \(\frac{2}{1}\)
\(X\)= 3
k mình nha
Chúc bạn học giỏi
Mình cảm ơn bạn nhiều
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\left(x+2004\right).\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
Vì \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
\(\Rightarrow x+2004=0\)
\(x=0-2004\)
\(x=-2004\)
Ta có : \(\frac{x+2}{198}+\frac{x+3}{197}=\frac{x+4}{196}+\frac{x+5}{195}\)
=> \(\left(\frac{x+2}{198}+1\right)+\left(\frac{x+3}{197}+1\right)=\left(\frac{x+4}{196}+1\right)+\left(\frac{x+5}{195}+1\right)\)
=> \(\frac{x+2+198}{198}+\frac{x+3+197}{197}=\frac{x+4+196}{196}+\frac{x+5+195}{195}\)
=> \(\frac{x+200}{198}+\frac{x+200}{197}=\frac{x+200}{196}+\frac{x+200}{195}\)
=> \(\frac{x+200}{198}+\frac{x+200}{197}-\frac{x+200}{196}-\frac{x+200}{195}=0\)
=> \(\left(x+200\right)\left(\frac{1}{198}+\frac{1}{197}-\frac{1}{196}-\frac{1}{195}\right)=0\)
Ta có : \(\frac{1}{198}+\frac{1}{197}\ne\frac{1}{196}+\frac{1}{195}\) => \(\frac{1}{198}+\frac{1}{197}-\frac{1}{196}-\frac{1}{195}\ne0\)
=> x + 200 = 0
=> x = -200
<=> (\(\frac{x+2}{198}\)+1) +(\(\frac{x+3}{197}\)+1) =(\(\frac{x+4}{196}\)+1) +(\(\frac{x+5}{195}\)+1)
<=> \(\frac{x+200}{198}+\frac{x+200}{197}=\frac{x+200}{196}+\frac{x+200}{195}\)
<=> \(\frac{x+200}{198}+\frac{x+200}{197}-\frac{x+200}{196}-\frac{x+200}{195}=0\)
<=> \(\left(x+200\right)\cdot\left(\frac{1}{198}+\frac{1}{197}-\frac{1}{196}-\frac{1}{195}\right)\)=0
Vì \(\frac{1}{195}>\frac{1}{196}>\frac{1}{197}>\frac{1}{198}\)
<=> \(\frac{1}{198}+\frac{1}{197}-\frac{1}{196}-\frac{1}{195}\) khác 0
<=> \(x+200=0\)
<=> x =
a.\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Mà: \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\Rightarrow x+1=0\Rightarrow x=-1\)
b.
\(\frac{x+4}{1990}+\frac{x+3}{1991}=\frac{x+2}{1992}+\frac{x+1}{1993}\Rightarrow2+\frac{x+4}{1990}+\frac{x+3}{1991}=2+\frac{x+2}{1992}+\frac{x+1}{1993}\)
\(\Rightarrow\left(1+\frac{x+4}{1990}\right)+\left(1+\frac{x+3}{1991}\right)=\left(1+\frac{x+2}{1992}\right)+\left(1+\frac{x+1}{1993}\right)\)
\(\Rightarrow\frac{x+1994}{1990}+\frac{x+1994}{1991}=\frac{x+1994}{1992}+\frac{x+1994}{1993}\)
\(\Rightarrow\frac{x+1994}{1990}+\frac{x+1994}{1991}-\frac{x+1994}{1992}-\frac{x+1994}{1993}=0\)
\(\Rightarrow\left(x+1994\right)\left(\frac{1}{1990}+\frac{1}{1991}-\frac{1}{1992}-\frac{1}{1993}\right)=0\)
\(\frac{1}{1990}+\frac{1}{1991}-\frac{1}{1992}-\frac{1}{1993}\ne0\Rightarrow x+1994=0\Rightarrow x=-1994\)
\(\Rightarrow\left(x-1\right)\left(x+3\right)=\left(x+2\right)\left(x-2\right)\)
\(\Rightarrow x^2+2x-3=x^2-4\)
\(\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)
\(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
=> (x-1)(x+3) = (x+2)(x-2) ( tích chéo bạn nhé :)))))
=> x^2 - x + 3x - 3 = x^2 + 2x - 2x - 4 ( bước này là mình nhân tung ra bạn nhé ^.^)
=> x^2 + 2x - 3 = x^2 - 4
=> x^2 +2x = x^2 - 4 +3
=> x^2 + 2x = x^2 - 1
=> 2x = -1 ( bớt cả 2 vế đi x^2)
=> x = \(\frac{-1}{2}\)
đúng 100% nha
ủng hộ mk đi bạn