Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)
rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau
suy ra AM = AN
b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)
rồi chứng minh hai tam giác ABH và ACK bằng nhau
suy ra BH = CK
c) vì hai tam giác ABH và ACK bằng nhau (cmt)
nên AH = AK
d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)
nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)
còn lại tự cm
e) dễ cm tam giác ABC đều
vẽ \(BH\perp AC\)
nên BH vừa là đường cao; phân giác và trung tuyến
dễ cm \(\Delta BHC=\Delta NKC\)
nên \(\widehat{BCH}=\widehat{NCK}=60^0\)
từ đó dễ cm AMN cân và OBC dều
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
hay ΔAMN cân tại A
b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
AB=AC
\(\widehat{EAB}=\widehat{FAC}\)
Do đó; ΔAEB=ΔAFC
Suy ra: BE=CF
c: Xét ΔBEM vuông tại E và ΔCFN vuông tại F có
BM=CN
BE=CF
Do đó: ΔBEM=ΔCFN
a b c m d 1 2 3 4 e f
Xét T/G ABC và DCM
CÓ ; M1=M2 ( đối đỉnh) CM=BM (M là trung điểm BC) AM=MD (gt) -> ABC=DCM(CgC)
Có T/G ABC=DCM -> Góc D=BAM(2 góc tương ứng )mà 2 góc Sole trong -> AB//DC
C) Xét T/G BFM và CEM có CM=MB(GT) E3=F4=90 độ M4=M3 ( đối đỉnh) -> BFM=CEM(g.c.g)
-> ME=MF -> M là trung điểm EF
A B C M D E F
a, Xét t/g ABM và t/g DCM có:
AM=DM(gt)
BM=CM(gt)
góc AMB=góc DMC (đối đỉnh)
=>t/g ABM=t/g DCM (c.g.c)
b, Vì t/g ABM=t/g DCM (cmt) => góc ABM = góc DCM (2 góc t/ứ)
Mà 2 góc này là cặp góc so le trong
=> AB//DC
c, Xét t/g BEM và t/g CFM có:
góc BEM = góc CFM = 90 độ (gt)
BM=CN(gt)
góc BME = góc CMF (đối đỉnh)
=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)
=>EM=FM (2 cạnh t/ứ)
=>M là trung điểm của EF
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau