Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài là gì vậy bạn ??? Tính hay tìm x ?
\(\frac{0,\left(3\right)+0,\left(384615\right)+\frac{3}{13}x}{0,0\left(3\right)+13}\)
\(=\frac{\frac{1}{3}+\frac{5}{13}+\frac{3}{13}x}{\frac{1}{30}+13}=\frac{\frac{1}{3}+\frac{5+3x}{13}}{\frac{391}{30}}=\frac{\frac{13+3\left(5+3x\right)}{39}}{\frac{391}{30}}\)
\(=\frac{\frac{13+15+9x}{39}}{\frac{391}{90}}=\frac{\frac{28+9x}{39}}{\frac{391}{90}}=\frac{28+9x}{39}\cdot\frac{90}{391}\)
P/S : Sai đề trầm trọng
\(\dfrac{0.\left(3\right)+0.\left(384615\right)+\dfrac{3}{13}x}{0.0\left(3\right)+13}=\dfrac{50}{85}\)
\(\Leftrightarrow\dfrac{\dfrac{28}{39}+\dfrac{3}{13}x}{\dfrac{391}{30}}=\dfrac{10}{17}\)
\(\Leftrightarrow x\cdot\dfrac{3}{13}+\dfrac{28}{39}=\dfrac{23}{3}\)
\(\Leftrightarrow x\cdot\dfrac{3}{13}=\dfrac{271}{39}\)
\(\Leftrightarrow x=\dfrac{271}{9}\)
\(\Leftrightarrow\dfrac{\dfrac{3}{10}+\dfrac{5}{13}+\dfrac{3}{13}x}{\dfrac{1}{30}+13}=\dfrac{50}{85}\)
\(\Leftrightarrow x\cdot\dfrac{3}{13}+\dfrac{89}{130}=\dfrac{23}{3}\)
=>3/13x=2723/390
hay x=2723/90
a) \(\left(\frac{5}{7}x-\frac{1}{4}\right)\left(\frac{-3}{4}x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{5}{7}x-\frac{1}{4}=0\\\frac{-3}{4}x+\frac{1}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{5}{7}x=\frac{1}{4}\\\frac{-3}{4}x=\frac{-1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{20}\\x=\frac{2}{3}\end{cases}}\)
Vậy \(x=\frac{7}{20}\) hoặc x=\(\frac{2}{3}\)
b) \(\left(\frac{4}{5}+x\right)\left(x-\frac{8}{13}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{4}{5}+x=0\\x-\frac{8}{13}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=\frac{8}{13}\end{cases}}\)
Vậy x=-4/5 hoặc x=8/13
c) \(\left(2x-\frac{1}{2}\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{2}=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=3\end{cases}}\)
Vậy x=1/4 hoặc x=3
\(x+\frac{7}{2}x+x=\frac{1}{2}\)
\(2x+\frac{7}{2}x=\frac{1}{2}\)
\(\left(2+\frac{7}{2}\right)x=\frac{1}{2}\)
\(\frac{11}{2}x=\frac{1}{2}\)
\(x=\frac{1}{2}:\frac{11}{2}\)
\(x=\frac{1}{11}\)
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)
\(=\frac{1}{x+3}-\frac{1}{x+34}\)
\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Rightarrow x=31\)
Vậy, x = 31
Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với \(x,k\inℝ;x\ne0;x\ne-k\)
Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)