K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

a: \(-3x^2\ge0\)

\(\Leftrightarrow x^2< =0\)

=>x=0

b: \(\dfrac{-5}{4x^2}\ge0\)

\(\Leftrightarrow4x^2< 0\)(vô lý)

c: \(\dfrac{4}{x+3}>=0\)

=>x+3>0

hay x>-3

d: \(\dfrac{-5}{2x-1}>=0\)

=>2x-1<0

hay x<1/2

e: \(\dfrac{-2}{x^2+1}>=0\)

=>x2+1<0(vô lý)

f: \(\dfrac{10}{x^2+9}>=0\)

=>x2+9>0(luôn đúng)

 

22 tháng 3 2020

sai đề hết??ucche

a: \(-3x^2\ge0\)

\(\Leftrightarrow x^2< =0\)

=>x=0

b: \(\dfrac{-5}{4x^2}\ge0\)

\(\Leftrightarrow4x^2< 0\)(vô lý)

c: \(\dfrac{4}{x+3}>=0\)

=>x+3>0

hay x>-3

d: \(\dfrac{-5}{2x-1}>=0\)

=>2x-1<0

hay x<1/2

e: \(\dfrac{-2}{x^2+1}>=0\)

=>x2+1<0(vô lý)

f: \(\dfrac{10}{x^2+9}>=0\)

=>x2+9>0(luôn đúng)

21 tháng 12 2021

a: \(\Leftrightarrow\left(x+2\right)\left(x+2-2x+10\right)=0\)

\(\Leftrightarrow x\in\left\{-2;12\right\}\)

10 tháng 8 2020

a) Bảng xét dấu:

x 3x-9 2x+4 Tích -2 3 - - 0 + 0 - + + 0 0 + - +

\(\Rightarrow\left(3x-9\right)\left(2x+4\right)< 0\Leftrightarrow-2< x< 3\)

10 tháng 8 2020

a) ( 2x + 4 )( 3x - 9 ) < 0

Xét hai trường hợp :

1/ \(\hept{\begin{cases}2x+4< 0\\3x-9>0\end{cases}}\Rightarrow\hept{\begin{cases}2x< -4\\3x>9\end{cases}}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\)( loại )

2/ \(\hept{\begin{cases}2x+4>0\\3x-9< 0\end{cases}}\Rightarrow\hept{\begin{cases}2x>-4\\3x< 9\end{cases}}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}}\Rightarrow-2< x< 3\)

Vậy tập nghiệm của bất phương trình là -2 < x < 3

b) \(\frac{x^2+5}{x-5}>0\)

Rõ ràng \(x^2+5>0\forall x\)

=> Để \(\frac{x^2+5}{x-5}>0\)

=> x - 5 > 0

=> x > 5

Vậy tập nghiệm của bất phương trình là x > 5

c) x2 - 15x + 50 \(\ge\)0

<=> x2 - 5x - 10x + 50 \(\ge\)0

<=> x( x - 5 ) - 10( x - 5 ) \(\ge\)0

<=> ( x - 10 )( x - 5 ) \(\ge\)

Xét 2 trường hợp

1/ \(\hept{\begin{cases}x-10\ge0\\x-5\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge10\\x\ge5\end{cases}}\Rightarrow x\ge10\)

2/ \(\hept{\begin{cases}x-10\le0\\x-5\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le10\\x\le5\end{cases}}\Rightarrow x\le5\)

Vậy tập nghiệm của bất phương trình là \(x\le5\)hoặc \(x\ge10\)

d) x2 - 6x + 15 > 0

<=> x2 - 6x + 9 + 6 > 0

<=> ( x - 3 )2 + 6 > 0 ( đúng với mọi x )

Vậy bất phương trình có vô số nghiệm 

NV
23 tháng 9 2019

a/ \(2x^2-3x+1>0\Rightarrow\left[{}\begin{matrix}x>1\\x< \frac{1}{2}\end{matrix}\right.\)

b/ \(-3x^2+2x+1< 0\Rightarrow-\frac{1}{3}< x< 1\)

c/ \(\frac{x+3}{x-2}\ge0\Rightarrow\left[{}\begin{matrix}x>2\\x\le-3\end{matrix}\right.\)

d/ \(\frac{2x+1}{x+2}\ge1\Leftrightarrow\frac{2x+1}{x+2}-1\ge0\Leftrightarrow\frac{x-1}{x+2}\ge0\Rightarrow\left[{}\begin{matrix}x\ge1\\x< -2\end{matrix}\right.\)

e/ \(\frac{\sqrt{x}+3}{2-\sqrt{x}}\le0\Rightarrow\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}< 0\end{matrix}\right.\) \(\Rightarrow x>4\)

g/\(\frac{\sqrt{x}-3}{\sqrt{x}-2}\ge0\Rightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x\ge9\\x< 4\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.\)

h/ \(\frac{\sqrt{x}-3}{\sqrt{x}-1}-\frac{1}{3}< 0\Rightarrow\frac{2\left(\sqrt{x}-4\right)}{3\left(\sqrt{x}-1\right)}< 0\Rightarrow1< x< 16\)

4 tháng 9 2018

a)\(x^2+4y^2-2x+4y+2\)

\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)

\(=\left(x-1\right)^2+\left(2y+1\right)^2\ge0\)(đúng)

b) Sửa đề

\(3y^2+x^2+2xy+2x+6y+3\)

\(=\left(x^2+y^2+2xy\right)+2y^2+2x+6y+3\)

\(=\left(x+y\right)^2+2\left(x+y\right)+1+2y^2+4y+2\)

\(=\left(x+y+1\right)^2+2\left(y+1\right)^2\ge0\) (đúng)

28 tháng 12 2017

17 tháng 12 2020

a, \(5\left(2x+1\right)-2x-1=16\)

\(\Leftrightarrow10x+5-2x-1-16=0\Leftrightarrow8x-12=0\Leftrightarrow x=\frac{3}{2}\)

b, \(4x\left(x+5\right)=3\left(x+5\right)\Leftrightarrow4x\left(x+5\right)-3\left(x+5\right)=0\)

\(\Leftrightarrow\left(4x-3\right)\left(x+5\right)=0\Leftrightarrow x=\frac{3}{4};-5\)

c, \(x\left(x-2\right)=3-6\Leftrightarrow x^2-2x+3=0\)

vô nghiệm 

17 tháng 12 2020

a) 5(2x+1)-2x-1=16

10x + 5 -2x =17

8x = 12

x= 3/2

 
5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^