Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(-3x^2\ge0\)
\(\Leftrightarrow x^2< =0\)
=>x=0
b: \(\dfrac{-5}{4x^2}\ge0\)
\(\Leftrightarrow4x^2< 0\)(vô lý)
c: \(\dfrac{4}{x+3}>=0\)
=>x+3>0
hay x>-3
d: \(\dfrac{-5}{2x-1}>=0\)
=>2x-1<0
hay x<1/2
e: \(\dfrac{-2}{x^2+1}>=0\)
=>x2+1<0(vô lý)
f: \(\dfrac{10}{x^2+9}>=0\)
=>x2+9>0(luôn đúng)
a: \(-3x^2\ge0\)
\(\Leftrightarrow x^2< =0\)
=>x=0
b: \(\dfrac{-5}{4x^2}\ge0\)
\(\Leftrightarrow4x^2< 0\)(vô lý)
c: \(\dfrac{4}{x+3}>=0\)
=>x+3>0
hay x>-3
d: \(\dfrac{-5}{2x-1}>=0\)
=>2x-1<0
hay x<1/2
e: \(\dfrac{-2}{x^2+1}>=0\)
=>x2+1<0(vô lý)
f: \(\dfrac{10}{x^2+9}>=0\)
=>x2+9>0(luôn đúng)
a: \(\Leftrightarrow\left(x+2\right)\left(x+2-2x+10\right)=0\)
\(\Leftrightarrow x\in\left\{-2;12\right\}\)
a) Bảng xét dấu:
\(\Rightarrow\left(3x-9\right)\left(2x+4\right)< 0\Leftrightarrow-2< x< 3\)
a) ( 2x + 4 )( 3x - 9 ) < 0
Xét hai trường hợp :
1/ \(\hept{\begin{cases}2x+4< 0\\3x-9>0\end{cases}}\Rightarrow\hept{\begin{cases}2x< -4\\3x>9\end{cases}}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\)( loại )
2/ \(\hept{\begin{cases}2x+4>0\\3x-9< 0\end{cases}}\Rightarrow\hept{\begin{cases}2x>-4\\3x< 9\end{cases}}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}}\Rightarrow-2< x< 3\)
Vậy tập nghiệm của bất phương trình là -2 < x < 3
b) \(\frac{x^2+5}{x-5}>0\)
Rõ ràng \(x^2+5>0\forall x\)
=> Để \(\frac{x^2+5}{x-5}>0\)
=> x - 5 > 0
=> x > 5
Vậy tập nghiệm của bất phương trình là x > 5
c) x2 - 15x + 50 \(\ge\)0
<=> x2 - 5x - 10x + 50 \(\ge\)0
<=> x( x - 5 ) - 10( x - 5 ) \(\ge\)0
<=> ( x - 10 )( x - 5 ) \(\ge\)0
Xét 2 trường hợp
1/ \(\hept{\begin{cases}x-10\ge0\\x-5\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge10\\x\ge5\end{cases}}\Rightarrow x\ge10\)
2/ \(\hept{\begin{cases}x-10\le0\\x-5\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le10\\x\le5\end{cases}}\Rightarrow x\le5\)
Vậy tập nghiệm của bất phương trình là \(x\le5\)hoặc \(x\ge10\)
d) x2 - 6x + 15 > 0
<=> x2 - 6x + 9 + 6 > 0
<=> ( x - 3 )2 + 6 > 0 ( đúng với mọi x )
Vậy bất phương trình có vô số nghiệm
a/ \(2x^2-3x+1>0\Rightarrow\left[{}\begin{matrix}x>1\\x< \frac{1}{2}\end{matrix}\right.\)
b/ \(-3x^2+2x+1< 0\Rightarrow-\frac{1}{3}< x< 1\)
c/ \(\frac{x+3}{x-2}\ge0\Rightarrow\left[{}\begin{matrix}x>2\\x\le-3\end{matrix}\right.\)
d/ \(\frac{2x+1}{x+2}\ge1\Leftrightarrow\frac{2x+1}{x+2}-1\ge0\Leftrightarrow\frac{x-1}{x+2}\ge0\Rightarrow\left[{}\begin{matrix}x\ge1\\x< -2\end{matrix}\right.\)
e/ \(\frac{\sqrt{x}+3}{2-\sqrt{x}}\le0\Rightarrow\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}< 0\end{matrix}\right.\) \(\Rightarrow x>4\)
g/\(\frac{\sqrt{x}-3}{\sqrt{x}-2}\ge0\Rightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x\ge9\\x< 4\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.\)
h/ \(\frac{\sqrt{x}-3}{\sqrt{x}-1}-\frac{1}{3}< 0\Rightarrow\frac{2\left(\sqrt{x}-4\right)}{3\left(\sqrt{x}-1\right)}< 0\Rightarrow1< x< 16\)
a)\(x^2+4y^2-2x+4y+2\)
\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2\ge0\)(đúng)
b) Sửa đề
\(3y^2+x^2+2xy+2x+6y+3\)
\(=\left(x^2+y^2+2xy\right)+2y^2+2x+6y+3\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1+2y^2+4y+2\)
\(=\left(x+y+1\right)^2+2\left(y+1\right)^2\ge0\) (đúng)
a, \(5\left(2x+1\right)-2x-1=16\)
\(\Leftrightarrow10x+5-2x-1-16=0\Leftrightarrow8x-12=0\Leftrightarrow x=\frac{3}{2}\)
b, \(4x\left(x+5\right)=3\left(x+5\right)\Leftrightarrow4x\left(x+5\right)-3\left(x+5\right)=0\)
\(\Leftrightarrow\left(4x-3\right)\left(x+5\right)=0\Leftrightarrow x=\frac{3}{4};-5\)
c, \(x\left(x-2\right)=3-6\Leftrightarrow x^2-2x+3=0\)
vô nghiệm
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^