Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|x+1|+|3x-1|+|x-1|=3
=} vs cả trong dấu giá trị tuyệt đối >0 thì=}
x+1+3x-1+x-1=3{=}5x=4{=}x=4/5
=}vs cả trong giá trị tuyệt đối <0 thì=}
x+1+3x-1+x-1=-3{=}5x=-4{=}x=-4/5
nghiệm của 4x+9
cho
4x+9=0
4x=-9
x=-9/4
vậy x=-9/4 là nghiệm của đa thứ 4x+9
nghiệm của -5x+6
cho
-5x+6=0
-5x=-6
x=-6:-5
x=6/5
vậy x=6/5 là nghiệm của đa thứ -5x+6
nghiệm của x2-1
cho
x2-1=0
x2=1
→x=1 hoặc x=-1
vậy x=1 hoặc x=-1 là nghiệm của đa thứ x2-1
nghiệm của x2-9
cho
x2-9=0
x2=9
→x=3 hoặc x=-3
vậy x=3 hoặc x=-3 là nghiệm của đa thứ x2-9
nghiệm của x2-x
cho
x2-x=0
→x2-1=0
→x=0
vậy x=0 là nghiệm của đa thức x2-x
` 4x + 9`
` 4x + 9=0`
` 4x = -9`
` x =-9/4`
Vậy.....
`-5x + 6 `
` -5x + 6=0`
` -5x = -6`
` x = 6/5`
Vậy....
` x^2 -1`
` x^2-1=0`
` ( x-1).(x+1)
\(=>\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy...
`x^2-9`
` x^2-9= 0`
` ( x + 3)(x-3) =0`
\(=>\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy,.....
` x^2-x`
` x^2-x = 0`
` ( x-1)x=0`
\(=>\left[{}\begin{matrix}x-1=0\\x=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
Vậy.....
`x^2-2x`
` x^2-2x = 0`
` ( x -2)x =0`
\(=>\left[{}\begin{matrix}x-2=0\\x=0\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
Vậy.....
a: \(-4x\left(x-5\right)-2x\left(8-2x\right)=-3\)
=>\(-4x^2+20x-16x+4x^2=-3\)
=>4x=-3
=>\(x=-\dfrac{3}{4}\)
b: \(-7\left(x+9\right)-3\left(5-x\right)=2\)
=>\(-7x-63-15+3x=2\)
=>\(-4x-78=2\)
=>\(-4x=78+2=80\)
=>\(x=\dfrac{80}{-4}=-20\)
\(A=4x-x^2-3=-\left(x^2-4x+3\right)=-\left(x^2-4x+4-1\right)\)
\(A=-\left(\left(x-2\right)^2-1\right)=-\left(x-2\right)^2+1\le1\forall x\)
\(\Rightarrow GTLN\) của A là 1 khi \(-\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
vậy GTLN của A là 1 khi \(x=2\)
\(B=-x^2-4x-2=-\left(x^2+4x+2\right)=-\left(x^2+4x+4-2\right)\)
\(B=-\left(\left(x+2\right)^2-2\right)=-\left(x+2\right)^2+2\le2\forall x\)
\(\Rightarrow GTLN\) của B là 2 khi \(-\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
vậy GTLN của B là 2 khi \(x=-2\)
\(C=2x-2x^2-5=-2\left(x^2-x+\dfrac{5}{2}\right)=-2\left(\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\right)\)
\(C=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\forall x\)
\(\Rightarrow GTLN\) của C là \(-\dfrac{9}{2}\) khi \(-2\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
vậy GTLN của C là \(-\dfrac{9}{2}\) khi \(x=\dfrac{1}{2}\)
\(D=-2x^2-3x+5=-\left(2x^2+3x-5\right)=-\left(\left(\sqrt{2}x+\dfrac{3}{2\sqrt{2}}\right)-\dfrac{49}{8}\right)\)
\(D=-\left(\sqrt{2}x+\dfrac{3}{2\sqrt{2}}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
\(\Rightarrow GTLN\) của D là \(\dfrac{49}{8}\) khi \(-\left(\sqrt{2}x+\dfrac{3}{2\sqrt{2}}\right)=0\Leftrightarrow\sqrt{2}x+\dfrac{3}{2\sqrt{2}}=0\Leftrightarrow\sqrt{2}x=\dfrac{-3}{2\sqrt{2}}\Leftrightarrow x=\dfrac{-3}{4}\)
vậy GTLN của D là \(\dfrac{49}{8}\) khi \(x=\dfrac{-3}{4}\)
A=4x-x2-3
Ta có: \(A=-\left(x^2-4x+3\right)\)
\(=-\left(x^2-2x-2x+3\right)\)
\(=-\left[x\left(x-2\right)-2\left(x-2\right)-1\right]\)
\(=-\left[\left(x-2\right)\left(x-2\right)-1\right]\)
\(=-\left[\left(x-2\right)^2-1\right]\)
Ta có: \(\left(x-2\right)^2-1\ge-1\forall x\Rightarrow-\left[\left(x-2\right)^2-1\right]\le1\forall x\)
Vậy GTLNA = 1 tại x = 2.
B-x^2-4x-2
Ta có: \(B=x^2-2x-2x-2\)
\(=x\left(x-2\right)-2\left(x-2\right)-6\)
\(=\left(x-2\right)\left(x-2\right)-6\)
\(=\left(x-2\right)^2-6\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2-6\ge6\forall x\)
Vậy GTNNB = 6 tại x = 2.
C=2x-2x^2-5
Ta có: \(C=-2\left(x^2-x+\dfrac{5}{2}\right)\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\) (làm tương tự 2 câu trên)
Ta có: \(-2\left(x-\dfrac{1}{2}\right)^2\le0\forall x\Rightarrow-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\forall x\)
Vậy GTLNC = \(-\dfrac{9}{2}\) tại x = \(\dfrac{1}{2}\).
D=-2x^2-3x+5
Ta có: \(D=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\) (tương tự câu C)
Ta có: \(-2\left(x+\dfrac{3}{4}\right)^2\le0\forall x\Rightarrow-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
Vậy GTLND = \(\dfrac{49}{8}\) tại x = \(-\dfrac{3}{4}\).
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
a) \(\left|x+9\right|=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x+9=2x\\x+9=-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-3\end{matrix}\right.\)
b) \(\left|5x\right|-3x=2\Leftrightarrow\left|5x\right|=3x+2\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=3x+2\\-5x=3x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-1}{4}\end{matrix}\right.\)
c) \(\left|x+6\right|-9=2x\Leftrightarrow\left|x+6\right|=2x+9\)
\(\Leftrightarrow\left[{}\begin{matrix}x+6=2x+9\\-x-6=2x+9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)
d) \(\left|2x-3\right|+x=21\Leftrightarrow\left|2x-3\right|=21-x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=21-x\\2x-3=x-21\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-18\end{matrix}\right.\)
e) \(\left|2x+4\right|=-4x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+4=4x\\2x+4=-4x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{-2}{3}\end{matrix}\right.\)
i) \(\left|3x-1\right|+2=x\Leftrightarrow\left|3x-1\right|=x-2\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=x-2\\3x-1=2-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{3}{4}\end{matrix}\right.\)
g) \(\left|x+15\right|+1=3x\Leftrightarrow\left|x+15\right|=3x-1\)
\(\Leftrightarrow\left[{}\begin{matrix}x+15=3x-1\\x+15=1-3x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3,5\end{matrix}\right.\)
h) \(\left|2x-5\right|+x=2\Leftrightarrow\left|2x-5\right|=2-x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=2-x\\2x-5=x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{3}\\x=3\end{matrix}\right.\)
a) |9+x|=2x
TH1: 9+x=2x
<=> 9=2x-x
<=> x=9
TH2: -9-x=2x
<=> -9=3x
<=> x=-3
b) |5x|-3x=2
TH1: 5x-3x=2
<=> 2x=2
<=> x=1
TH2: -5x-3x=2
<=> -8x=2
<=>x=-4
c) |x+6|-9=2x
TH1: x+6-9=2x
<=> -3=x
TH2: -x-6-9=2x
<=> -15=3x
<=>x=-5
d) |2x-3|+x=21
TH1: 2x-3+x=21
<=> 3x=24
<=> x=8
TH2: -2x+3+x=21
<=> -x=18
<=> x=-18
e,i,g,h tương tự
c) |2x + 3| - 4x < 9
Xét x ≥ -3/2
=> |2x + 3| - 4x < 9
<=> 2x + 3 - 4x < 9
<=> - 2x + 3 < 9
=> - 2x < 6
=> x < - 3
Xét x < -3/2 tương tự
b,xet 2 TH
TH1 3x-5=x+2
=>3x-x=2+5
=>2x=7
=>x=7/2
TH2 5-3x=x+2
=>-3x-x=5-2
=>-2x=3
=>x=-3/2
THẤY ĐÚNG THÌ
THANK