Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(2^x\left(1+2+2^2+2^3\right)=480\)
\(2^x.15=480\Rightarrow2^x=\frac{480}{15}=32=2^5\Rightarrow x=5\)
\(A=1+5+5^2+5^3+...+5^{2011}\)
\(5A=5+5^2+5^3+...+5^{2012}\)
=>\(5A-A=5^{2012}-1\Rightarrow A=\frac{5^{2012}-1}{4}\)
Phương trình ban đầu tương đương với: \(\frac{5^{2012}-1}{4}\left|x-1\right|=5^{2012}-1\)
\(\Leftrightarrow\left|x-1\right|=4\Leftrightarrow\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)
\(1.\left(-2013\right).2.1007+1007.26\)
\(=\left(-4026\right).1007+1007.26\)
\(=1007.\left(26-4026\right)\)
\(=1007.\left(-4000\right)\)
\(=4028000\)
\(2.\) Ta có: \(\left(x-y\right)+\left(y-z\right)+\left(z+x\right)=2011+2012+2013\)
\(\Leftrightarrow2x=6036\)
\(\Leftrightarrow x=\frac{6036}{2}=3018\)
Suy ra: \(x-y=2011\Leftrightarrow3018-2011=y\Leftrightarrow y=1007\)
\(y-z=2012\Leftrightarrow y-2012=z\Leftrightarrow z=-1005\)
V... \(x=3018,y=1007,z=-1005\)
a.N=1-5-9+13+17-21+...+2001-2005-2009+2013+2017
N = ( 1 - 5 - 9 + 13 ) + ( 17 - 21 - 25 + 29 ) + .... + ( 2001 - 2005 - 2009 + 2013 ) + 2017
N = 0 + 0 + ... + 0 + 2017
N = 2017
\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
\(\Rightarrow2^x\cdot1+2^x\cdot2^1+2^x\cdot2^2+2^x\cdot2^3=480\)
\(\Rightarrow2^x\left(1+2^1+2^2+2^3\right)=480\)
\(\Rightarrow2^x\cdot15=480\)
\(\Rightarrow2^x=32\Rightarrow2^x=2^5\Rightarrow x=5\)
b) \(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=\frac{2012}{1}+\frac{2011}{2}+...+\frac{2}{2011}+\frac{1}{2012}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=\left(\frac{2011}{2}+1\right)+...+\left(\frac{2}{2011}+1\right)+\left(\frac{1}{2012}+1\right)+1\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=\frac{2013}{2}+...+\frac{2013}{2011}+\frac{2013}{2012}+\frac{2013}{2013}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=2013\left(\frac{1}{2}+...+\frac{1}{2012}+\frac{1}{2013}\right)\)
\(\Rightarrow x=2013.\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}}\)
\(\Rightarrow x=2013\)
Vậy \(x=2013\)
\(\left(x-1\right)\left(y+2\right)=5\)
\(\Rightarrow\left(x-1\right);\left(y+2\right)\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)
Xét bảng
Vậy cặp số xy là.....................
b,\(\text{Vì}\left(x-2011\right)^2\)là nguyên dương và \(|y+2012|\)cũng nguyên dương
mà \(\left(x-2011\right)^2+|y+2012|=0\)
\(\Rightarrow\orbr{\begin{cases}x-2011=0\\y+2012=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2011\\y=-2012\end{cases}}\)
Vậy \(\left(x;y\right)=\left(2011;-2012\right)\)
phần a, bạn Minh hàn băng làm rồi nha