\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{2499}{2500}\)

b)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{50^2}{49.51}=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.....\frac{50.50}{49.51}\)

\(=\frac{2.2.3.3.4.4......50.50}{1.3.2.4.3.5....49.51}=\frac{\left(2.3.4.....50\right).\left(2.3.4......50\right)}{\left(1.2.4.....49\right).\left(3.4.5.....51\right)}\)

\(=\frac{50.2}{1.51}=\frac{100}{51}\)

3 tháng 4 2017

Cách làm:
 tách tử thành 2.2;3.3;4.4;...;50.50
Sau đó ta nhân tử với tử,mẫu với mẫu theo thứ tự chữ số 1 trước như sau:
Tử: 2.3.4...50/1.2.3....49  .   2.3.4...50/3.4.5...51
=50.2/51=100/51 
*Cho tôi biết cách viết dấu gạch ngang phân số nhé!

23 tháng 7 2016

52/51

23 tháng 7 2016

 

\(\text{= 2/1 . 2/3 . 3/2 . 3/4 . 4/3 . 4/5 ....... 50/49.50/51 }\)

Dùng phương pháp khử liên tiếp ta có

\(=\frac{2}{1}-\frac{50}{51}=\frac{52}{51}\)

Dài thế!

15 tháng 4 2019

\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)

\(=\frac{1}{3}-\frac{1}{21}\)

\(=\frac{7}{21}-\frac{1}{21}=\frac{6}{21}\)

15 tháng 4 2019

\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)

\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)

\(A=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)+...+\left(\frac{1}{19}-\frac{1}{19}\right)-\frac{1}{21}\)

\(A=\frac{1}{3}-\frac{1}{21}\)

\(A=\frac{2}{7}\)

22 tháng 2 2017

a) Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)

. . .

\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\right)\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(1+1-\frac{1}{50}\right)\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{4}\cdot\frac{99}{50}=\frac{99}{200}< \frac{100}{200}=\frac{1}{2}\left(đpcm\right)\)

b) Ta có :

\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}>48\)

\(\Rightarrow1-\frac{1}{4}+1-\frac{1}{9}+...+1-\frac{1}{2500}>48\)

\(\Rightarrow49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< 49\)

Lại có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

. . .

\(\frac{1}{50^2}< \frac{1}{49\cdot50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{50^2}< \frac{49}{50}< 1\)

\(\Rightarrow-\left(\frac{1}{2^2}+...=\frac{1}{50^2}\right)>1\)

\(\Rightarrow49-\left(\frac{1}{2^2}+...+\frac{1}{50^2}\right)>49-1=48\)

hay \(\frac{3}{4}+\frac{8}{9}+...+\frac{2499}{2500}>48\left(đpcm\right)\)

25 tháng 2 2018

\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

TA có :\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1=2\)

\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\left(đpcm\right)\)

11 tháng 5 2017

Bài 2:

a, S = 1/11 + 1/12 + .. +1/20 với 1/2

SỐ số hạng tổng S: [20 - 11]: 1 + 1 = 10 số

mà 1/11 > 1/20

      1/12 > 1/20

.........................

      1/20 = 1/20

=> 1/11 + 1/12 + ... + 1/20 > 1/20 . 10 => S > 1/2

b, B = 2015/2016 + 2016/2017 và C = 2015+2016/2016+2017

Dễ dàng ta thấy: C = 4031/4033 < 1

B = 2015/2016 + 2016/2017

B = 2015/2016 + [1/2016 + 4062239/4066272]

B = [2015/2016 + 1/2016] + 4062239/4066272]

B = 1 +4062239/4066272

=> B > 1 

Vậy B > C

c, [-1/5]^9 và [-1/25]^5

ta có: 255 = [52]5 = 52.5 = 510 > 59

=> [1/5]9 > [1/25]5

=> [-1/5]9 < [-1/25]5

d, 1/32+1/42+1/52+1/62 và 1/2

ta có: 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 = 1/9 + 1/16 + 1/25 + 1/36

mà: 1/9 < 1/8

      1/16 < 1/8

      1/25 < 1/8

      1/36 < 1/8

=> 1/9+1/16+1/25+1/36 < 1/2

Vậy 1/32+1/42+1/52+1/62 < 1/2

11 tháng 5 2017

Bài 1:

A = 3/4 . 8/9 . 15/16....2499/2500

A = [1.3/22][2.4/32]....[49.51/502]

A = [1.2.3.4.5...51 / 2.3.4....50][3.4.5...51 / 2.3.4...50]

A = 1/50 . 51/2

A = 51/100

B = 22/1.3 + 32/2.4 + ... + 502/49.51

B = 4/3.9/8....2500/2499

Nhận thấy B ngược A => B = 100/51 [cách tính tương tự tính A]

Bài 2:

a. S = 1/11+1/12+...+1/20 và 1/2

Số số hạng tổng S: [20 - 11]: 1 + 1 = 10 [ps]

ta có: 1/11 > 1/20