\(\frac{2004}{2005}=\frac{1}{x}\)

b)\(\fra...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

a,  \(\frac{2004}{2005}\)=\(\frac{1}{x}\) =>2004 x= 1. 2005

                      =>2004 x= 2005

                      => x = \(\frac{2005}{2004}\)

b,  \(\frac{1002}{2005}\) = \(\frac{1}{x}\)

=> 1002 x = 1. 2005

=> 1002 x = 2005

=> x =\(\frac{2005}{1002}\)

28 tháng 2 2017

kết quả là 2008 đấy bạn

nếu nhà bạn có máy tính thì chỉ cần bấm phương trình x thì sẽ ra kết quả thôi

28 tháng 2 2017

\(\frac{x-1}{2007}+\frac{x-2}{2006}+\frac{x-3}{2005}=\frac{x-4}{2004}+\frac{x-5}{2003}+\frac{x-6}{2002}\)

=> \(\left(\frac{x-1}{2007}-1\right)+\left(\frac{x-2}{2006}-1\right)+\left(\frac{x-3}{2005}-1\right)=\left(\frac{x-4}{2004}-1\right)+\left(\frac{x-5}{2003}-1\right)+\left(\frac{x-6}{2002}-1\right)\)

=> \(\frac{x-1+2007}{2007}+\frac{x-2+2006}{2006}+\frac{x-3+2005}{2005}=\frac{x-4+2004}{2004}+\frac{x-5+2003}{2003}+\frac{x-6+2002}{2002}\)

=> \(\frac{x-2008}{2007}+\frac{x-2008}{2006}+\frac{x-2008}{2005}=\frac{x-2008}{2004}+\frac{x-2008}{2003}+\frac{x-2008}{2002}\)

=> \(\frac{x-2008}{2007}+\frac{x-2008}{2006}+\frac{x-2008}{2005}-\frac{x-2008}{2004}-\frac{x-2008}{2003}-\frac{x-2008}{2002}=0\)

=> \(\left(x-2008\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)

Mà \(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\ne0\)

=> x - 2008 = 0 => x = 2008

Vậy x = 2008

13 tháng 4 2017

\(\frac{2004}{2005}>\frac{2004}{2005+2006}\)

\(\frac{2005}{2006}>\frac{2005}{2005+2006}\)

->\(\frac{2004}{2005}+\frac{2005}{2006}>\frac{2004+2005}{2005+2006}\)

-> A >B

5 tháng 7 2017

hai biểu thức trên bằng nhau

Ta có VẾ A

\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)

\(2005\cdot A=\frac{2005\cdot\left(2005^{2005}+1\right)}{2005^{2006}+1}\)

\(2005\cdot A=\frac{2005^{2006}+2005}{2005^{2006}+1}\)

\(2005\cdot A=\frac{2005^{2006}+1+2004}{2005^{2006}+1}\)

\(2005\cdot A=1+\frac{2004}{2005^{2006}+1}\)

Ta lại có Vế B :

\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)

\(2005\cdot B=\frac{2005\cdot\left(2005^{2004}+1\right)}{2005^{2005}+1}\)

\(2005\cdot B=\frac{2005^{2005}+2005}{2005^{2005}+1}\)

\(2005\cdot B=\frac{2005^{2005}+1+2004}{2005^{2005}+1}\)

\(2005\cdot B=1+\frac{2004}{2005^{2005}+1}\)

Nhìn vào trên , suy ra A < B . 

23 tháng 5 2018

\(2005A=\frac{2005\left(2005^{2005}+1\right)}{2005^{2006}+1}=\frac{2005^{2006}+2005}{2005^{2006}+1}=\frac{2005^{2006}+1+2004}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)

\(2005B=\frac{2005\left(2005^{2004}+1\right)}{2005^{2005}+1}=\frac{2005^{2005}+2005}{2005^{2005}+1}=\frac{2005^{2005}+1+2014}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2014}{2005^{2005}+1}=1+\frac{2014}{2005^{2005}+1}\)Ta thấy \(2005^{2006}+1>2005^{2005}+1\Rightarrow\frac{2004}{2005^{2006}+1}< \frac{2004}{2005^{2005}+1}\Rightarrow1+\frac{2004}{2005^{2006}+1}< 1+\frac{2004}{2005^{2005}+1}\)

\(\Rightarrow A< B\)

AH
Akai Haruma
Giáo viên
12 tháng 9 2024

Lời giải:

$\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x(x+1)}=\frac{2004}{2005}$

$2(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x(x+1)})=\frac{2004}{2005}$

$\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x(x+1)}= \frac{1002}{2005}$

$\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x(x+1)}=\frac{1002}{2005}$

$\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{1002}{2005}$

$\frac{1}{2}-\frac{1}{x+1}=\frac{1002}{2005}$

$\frac{1}{x+1}=\frac{1}{2}-\frac{1002}{2005}=\frac{1}{4010}$

$\Rightarrow x+1=4010$

$\Rightarrow x=4009$

AH
Akai Haruma
Giáo viên
31 tháng 8 2024

Lời giải:

$\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x(x+1)}=\frac{2004}{2005}$

$\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x(x+1)}=\frac{2004}{2005}$

$2\left[\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x(x+1)}\right]=\frac{2004}{2005}$
$\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x(x+1)}=\frac{1002}{2005}$

$\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{(x+1)-x}{x(x+1)}=\frac{1002}{2005}$

$\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{1002}{2005}$

$\frac{1}{2}-\frac{1}{x+1}=\frac{1002}{2005}$

$\frac{1}{x+1}=\frac{1}{2}-\frac{1002}{2005}=\frac{1}{4010}$
$x+1=4010$

$x=4010-1=4009$